Hostname: page-component-cb9f654ff-5kfdg Total loading time: 0 Render date: 2025-08-15T17:11:53.227Z Has data issue: false hasContentIssue false

Direct numerical simulations of an axisymmetric turbulent boundary layer along a slender cylinder

Published online by Cambridge University Press:  11 August 2025

Yikai Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 10084, PR China
Wei-Xi Huang
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 10084, PR China
Chun-Xiao Xu*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 10084, PR China
*
Corresponding author: Chun-Xiao Xu, xucx@tsinghua.edu.cn

Abstract

Axisymmetric turbulent boundary layers are of great significance in industry and the fluid dynamics community. In this paper, direct numerical simulations of an axially developing axisymmetric turbulent boundary layer along a slender cylinder are performed. Periodical suction and blowing perturbation are used to trigger the transition from laminar inflow to turbulent flow downstream, resulting in the boundary layer thickness varying from 7 to 13 times the cylinder radius, and the friction Reynolds number varying from 300 to 510. Turbulence statistics including wall friction coefficient, mean velocity profile and Reynolds stresses are obtained. The turbulence intensities are weakened compared with the planar turbulent layer, and the inter-component energy transfer is also inhibited. A curvature-weighted transformation is proposed, and the transformed Reynolds stresses and mean velocity deficit collapse well with the planar case in the near-wall region. The velocity streaks and vortical structures are explored. The wall-normal variation of the mean spanwise spacing of low-speed streaks is greatly influenced by the cylindrical geometry. Quasi-streamwise vortices dominate the near-wall region, and the arch vortices are prevalent in the outer region. The prograde hairpin vortices can be commonly observed.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.10.1063/1.2717527CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.10.1017/S0022112000001580CrossRefGoogle Scholar
Afzal, N. & Singh, K.P. 1976 Measurements in an axisymmetric turbulent boundary layer along a circular cylinder. Aeronaut. Q. 27 (3), 217228.10.1017/S000192590000771XCrossRefGoogle Scholar
Ali, S.Z. & Dey, S. 2023 Universal law of skin-friction coefficient in a fully developed zero pressure gradient axisymmetric turbulent boundary layer flow. J. Fluid Mech. 974, A31.10.1017/jfm.2023.734CrossRefGoogle Scholar
Draad, A.A., Kuiken, G.D.C. & Nieuwstadt, F.T.M. 1998 Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267312.10.1017/S0022112098003139CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.10.1063/1.1516779CrossRefGoogle Scholar
Glauert, M.B. & Lighthill, M.J. 1955 The axisymmetric boundary layer on a long thin cylinder. Proc. R. Soc. Lond. A: Math. Phys. Sci. 230, 188203.Google Scholar
Jordan, S.A. 2012 Spatial resolution of the axisymmetric turbulent statistics along thin circular cylinders at high transverse curvatures and low-Re . J. Fluids Engng 134, 091206.10.1115/1.4007269CrossRefGoogle Scholar
Jordan, S.A. 2013 A skin friction model for axisymmetric turbulent boundary layers along long thin circular cylinders. Phys. Fluids 25 (7), 075104.10.1063/1.4813810CrossRefGoogle Scholar
Jordan, S.A. 2014 a On the axisymmetric turbulent boundary layer growth along long thin circular cylinders. J. Fluids Engng 136 (5), 051202.10.1115/1.4026419CrossRefGoogle Scholar
Jordan, S.A. 2014 b A simple model of axisymmetric turbulent boundary layers along long thin circular cylinders. Phys. Fluids 26 (8), 085110.10.1063/1.4893541CrossRefGoogle Scholar
Karniadakis, G.E., Israeli, M. & Orszag, S.A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.10.1016/0021-9991(91)90007-8CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2018 Analysis of axisymmetric boundary layers. J. Fluid Mech. 849, 927941.10.1017/jfm.2018.449CrossRefGoogle Scholar
Lagraa, B., Labraga, L. & Mazouz, A. 2004 Characterization of low-speed streaks in the near-wall region of a turbulent boundary layer. Eur. J. Mech. B/Fluids 23 (4), 587599.10.1016/j.euromechflu.2003.12.005CrossRefGoogle Scholar
Lueptow, R.M. 1990 Turbulent boundary layer on a cylinder in axial flow. Phys. Fluids 28, 17051706.Google Scholar
Lueptow, R.M. & Jackson, C.P. 1991 Near-wall streaky structure in a turbulent boundary layer on a cylinder. Phys. Fluids A: Fluid Dyn. 3 (11), 28222824.10.1063/1.858172CrossRefGoogle Scholar
Lueptow, R.M., Leehey, P. & Stellinger, T. 1985 The thick, turbulent boundary layer on a cylinder: mean and fluctuating velocities. Phys. Fluids 28 (12), 34953505,10.1063/1.865417CrossRefGoogle Scholar
Luxton, R.E., Bull, M.K. & Rajagopalan, S. 1984 The thick turbulent boundary layer on a long fine cylinder in axial flow. Aeronaut. J. 88 (875), 186199.10.1017/S0001924000020480CrossRefGoogle Scholar
Monte, S., Sagaut, P. & Gomez, T. 2011 Analysis of turbulent skin friction generated in flow along a cylinder. Phys of Fluids 23, 065106.10.1063/1.3590018CrossRefGoogle Scholar
Neves, J.C., Moin, P. & Moser, R.D. 1994 Effects of convex transverse curvature on wall-bounded turbulence. Part 1. The velocity and vorticity. J. Fluid Mech. 272, 349382.10.1017/S0022112094004490CrossRefGoogle Scholar
Nordström, J., Nordin, N. & Henningson, D. 1999 The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput. 20 (4), 13651393.10.1137/S1064827596310251CrossRefGoogle Scholar
Ohta, T. 2017 Turbulence structures in high-speed air flow along a thin cylinder. J. Turbul. 18 (6), 497511.10.1080/14685248.2017.1298769CrossRefGoogle Scholar
Piquet, J. & Patel, V.C. 1999 Transverse curvature effects in turbulent boundary layer. Prog. Aerosp. Sci. 35 (7), 661672.10.1016/S0376-0421(99)00007-XCrossRefGoogle Scholar
Rao, G.N.V. 1967 The law of the wall in a thick axisymmetric turbulent boundary layer. J. Appl. Mech. 34 (1), 237238.10.1115/1.3607642CrossRefGoogle Scholar
Richmond, R.L. 1957 Experimental investigation of thick axially symmetric boundary layers on cylinders at subsonic and hypersonic speeds. PhD thesis, California Institute of Technology, USA.Google Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Schlatter, P., Li, Q., Brethouwer, G., Johansson, A.V. & Henningson, D.S. 2010 Simulations of spatially evolving turbulent boundary layers up to $Re_\theta=4300$ . Intl J. Heat Fluid Flow 31 (3), 251261.10.1016/j.ijheatfluidflow.2009.12.011CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.10.1017/S0022112010003113CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667XCrossRefGoogle Scholar
Smith, C.R. & Metzler, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.10.1017/S0022112083000634CrossRefGoogle Scholar
Snarski, S.R. & Lueptow, R.M. 1995 Wall pressure and coherent structures in a turbulent boundary layer on a cylinder in axial flow. J. Fluid Mech. 286, 137171.10.1017/S0022112095000681CrossRefGoogle Scholar
Tutty, O.R. 2008 Flow along a long thin cylinder. J. Fluid Mech. 602, 137.10.1017/S0022112008000542CrossRefGoogle Scholar
Willmarth, W.W. & Yang, C.S. 1970 Wall-pressure fluctuations beneath turbulent boundary layers on a flat plate and a cylinder. J. Fluid Mech. 41 (1), 4780.10.1017/S0022112070000526CrossRefGoogle Scholar
Woods. 2006 Computation of axial and near-axial flow over a long circular cylinder. PhD thesis, The University of Adelaide, Australia.Google Scholar