Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-25T13:06:29.780Z Has data issue: false hasContentIssue false

A correlation model of energy and impulse losses for vortex ring–porous wall interactions

Published online by Cambridge University Press:  08 August 2025

Lei Wang
Affiliation:
School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
Yang Xu*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Jinjun Wang
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
*
Corresponding author: Yang Xu, xuyang@buaa.edu.cn

Abstract

An experimental study was conducted to investigate the impingement of a vortex ring onto a porous wall by laser-induced fluorescence and particle image velocimetry. The effects of different Reynolds numbers (${{Re}}_{\it\Gamma } = 700$ and $1800$) and hole diameters ($d_{h}^{*} = 0.067$, $0.10$, $0.133$ and $0.20$) on the flow characteristics were examined at a constant porosity ($\phi = 0.75$). To characterise fluid transport through a porous wall, we recall the model proposed by Naaktgeboren, Krueger & Lage (2012, J. Fluid Mech., vol. 707, 260–286), which shows rough agreement with the experimental results due to the absence of vortex ring characteristics. This highlights the need for a more accurate model to correlate the losses in kinetic energy ($\Delta E^{*}$) and impulse ($\Delta I^{*}$) resulting from the vortex ring–porous wall interaction. Starting from Lamb’s vortex ring model and considering the flow transition from the upstream laminar state to the downstream turbulent state caused by the porous wall disturbance, a new model is derived theoretically: $\Delta E^{*} = 1 - k(1 - \Delta I^{*})^2$, where $k$ is a parameter dependent on the dimensionless core radius $\varepsilon$, with $k = 1$ when no flow state change occurs. This new model effectively correlates $\Delta E^{*}$ and $\Delta I^{*}$ across more than 70 cases from current and previous experiments, capturing the dominant flow physics of the vortex ring–porous wall interaction.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adhikari, D. & Lim, T.T. 2009 The impact of a vortex ring on a porous screen. Fluid Dyn. Res. 41 (5), 051404.10.1088/0169-5983/41/5/051404CrossRefGoogle Scholar
Akhmetov, D.G. 2009 Vortex Rings. Springer Science & Business Media.10.1007/978-3-642-05016-9CrossRefGoogle Scholar
Ali, M., Rady, M., Atti, M.A. & Ewais, E.M. 2020 Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers. Renew. Energy 145, 18491861.10.1016/j.renene.2019.07.082CrossRefGoogle Scholar
Archer, P.J., Thomas, T.G. & Coleman, G.N. 2008 Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime. J. Fluid Mech. 598, 201226.10.1017/S0022112007009883CrossRefGoogle Scholar
Bradshaw, P. 1965 The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22, 679687.10.1017/S0022112065001064CrossRefGoogle Scholar
Cheng, M, Lou, J. & Lim, T.T. 2014 A numerical study of a vortex ring impacting a permeable wall. Phys. Fluids 26 (10), 103602.10.1063/1.4897519CrossRefGoogle Scholar
Chu, C.C., Wang, C.T. & Chang, C.C. 1995 A vortex ring impinging on a solid plane surface–Vortex structure and surface force. Phys. Fluids 7 (6), 13911401.10.1063/1.868527CrossRefGoogle Scholar
Das, D., Bansal, M. & Manghnani, A. 2017 Generation and characteristics of vortex rings free of piston vortex and stopping vortex effects. J. Fluid Mech. 811, 138167.10.1017/jfm.2016.733CrossRefGoogle Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.10.1017/S0022112097008410CrossRefGoogle Scholar
Hrynuk, J.T., Stutz, C.M. & Bohl, D.G. 2018 Experimental measurement of vortex ring screen interaction using flow visualization and molecular tagging velocimetry. Trans. ASME J. Fluids Engng 140 (11), 111401111411.10.1115/1.4040215CrossRefGoogle Scholar
Hrynuk, J.T., Van Luipen, J. & Bohl, D. 2012 Flow visualization of a vortex ring interaction with porous surfaces. Phys. Fluids 24 (3), 037103.10.1063/1.3695377CrossRefGoogle Scholar
Jain, S., Sharma, S., Roy, D. & Basu, S. 2023 Vortical cleaning of oil-impregnated porous surfaces. Phys. Rev. Fluids 8 (4), 044701.10.1103/PhysRevFluids.8.044701CrossRefGoogle Scholar
Jha, N.K. & Govardhan, R.N. 2015 Interaction of a vortex ring with a single bubble: bubble and vorticity dynamics. J. Fluid Mech. 773, 460497.10.1017/jfm.2015.256CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488526.10.1017/jfm.2013.9CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Li, Z.Y., Xu, Y. & Wang, J.J. 2020 Similarity parameter for synthetic jet vortex rings impinging onto porous walls. AIAA J. 58 (2), 722732.10.2514/1.J058628CrossRefGoogle Scholar
Limbourg, R. & Nedic, J. 2021 Formation of an orifice-generated vortex ring. J. Fluid Mech. 913, A29.10.1017/jfm.2021.36CrossRefGoogle Scholar
Naaktgeboren, C., Krueger, P.S. & Lage, J.L. 2012 Interaction of a laminar vortex ring with a thin permeable screen. J. Fluid Mech. 707, 260286.10.1017/jfm.2012.277CrossRefGoogle Scholar
Rosenfeld, M., Katija, K. & Dabiri, J.O. 2009 Circulation generation and vortex ring formation by conic nozzles. J. Fluids Engng 131 (9), 091204.10.1115/1.3203207CrossRefGoogle Scholar
Saffman, P. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths 49, 371380.10.1002/sapm1970494371CrossRefGoogle Scholar
Sullivan, I.S., Niemela, J.J., Hershberger, R.E., Bolster, D. & Donnelly, R.J. 2008 Dynamics of thin vortex rings. J. Fluid Mech. 609, 319347.10.1017/S0022112008002292CrossRefGoogle Scholar
Sun, K.F., Sun, J., Fan, Y., Yu, L.M., Chen, W.Y., Kong, X.M. & Yu, C.X. 2023 Characterization of a synthetic jet vortex ring flowing through honeycomb. Phys. Fluids 35 (7), 075123.Google Scholar
Xu, Y., Li, Z.Y. & Wang, J.J. 2021 Experimental investigation on the impingement of synthetic jet vortex rings onto a porous wall. Phys. Fluids 33 (3), 035140.10.1063/5.0042968CrossRefGoogle Scholar
Xu, Y., Wang, J.J., Feng, L.H., He, G.S. & Wang, Z.Y. 2018 Laminar vortex rings impinging onto porous walls with a constant porosity. J. Fluid Mech. 837, 729764.10.1017/jfm.2017.878CrossRefGoogle Scholar