Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-14T16:16:11.988Z Has data issue: false hasContentIssue false

Dynamics and clustering of sedimenting disc lattices

Published online by Cambridge University Press:  08 August 2025

Harshit Joshi*
Affiliation:
International Center for Theoretical Sciences, Bengaluru 560 089, India
Rahul Chajwa
Affiliation:
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
Sriram Ramaswamy
Affiliation:
International Center for Theoretical Sciences, Bengaluru 560 089, India Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
Narayanan Menon
Affiliation:
Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
Rama Govindarajan
Affiliation:
International Center for Theoretical Sciences, Bengaluru 560 089, India
*
Corresponding author: Harshit Joshi, harshit.joshi@icts.res.in

Abstract

Uniform arrays of particles tend to cluster as they sediment in viscous fluids. Shape anisotropy of the particles enriches this dynamics by modifying the mode structure and the resulting instabilities of the array. A one-dimensional lattice of sedimenting spheroids in the Stokesian regime displays either an exponential or an algebraic rate of clustering depending on the initial lattice spacing (Chajwa et al. 2020 Phys. Rev. X vol. 10, pp. 041016). This is caused by an interplay between the Crowley mechanism, which promotes clumping, and a shape-induced drift mechanism, which subdues it. We theoretically and experimentally investigate the sedimentation dynamics of one-dimensional lattices of oblate spheroids or discs and show a stark difference in clustering behaviour: the Crowley mechanism results in clumps comprising several spheroids, whereas the drift mechanism results in pairs of spheroids whose asymptotic behaviour is determined by pair–hydrodynamic interactions. We find that a Stokeslet, or point-particle, approximation is insufficient to accurately describe the instability and that the corrections provided by the first reflection are necessary for obtaining some crucial dynamical features. As opposed to a sharp boundary between exponential growth and neutral eigenvalues under the Stokeslet approximation, the first-reflection correction leads to exponential growth for all initial perturbations, but far more rapid algebraic growth than exponential growth at large dimensionless lattice spacing $\tilde {d}$. For discs with aspect ratio $0.125$, corresponding to the experimental value, the instability growth rate is found to decrease with increasing lattice spacing $\tilde {d}$, approximately as $\tilde {d}^{ -4.5}$, which is faster than the $\tilde {d}^{-2}$ for spheres (Crowley 1971 J. Fluid Mech. vol. 45, pp. 151–159). It is shown that the first-reflection correction has a stabilising effect for small lattice spacing and a destabilising effect for large lattice spacing. Sedimenting pairs predominantly come together to form an inverted ‘T’, or ‘$\perp$’, which our theory accounts for through an analysis that builds on Koch & Shaqfeh (1989 J. Fluid Mech. vol. 209, pp. 521–542). This structure remains stable for a significant amount of time.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bec, J. 2003 Fractal clustering of inertial particles in random flows. Phys. Fluids 15 (11), L81L84.10.1063/1.1612500CrossRefGoogle Scholar
Berne, B.J. & Pechukas, P. 1972 Gaussian model potentials for molecular interactions. J. Chem. Phys. 56 (8), 42134216.CrossRefGoogle Scholar
Burd, A.B. & Jackson, G.A. 2009 Particle aggregation. Annu. Rev. Mater. Sci. 1 (2009), 6590.10.1146/annurev.marine.010908.163904CrossRefGoogle ScholarPubMed
Butler, J.E. & Shaqfeh, E.S.G. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468, 205237.10.1017/S0022112002001544CrossRefGoogle Scholar
Chajwa, R. 2021 Driven Stokesian suspensions: particle anisotropy, effective inertia and transient growth. PhD thesis, Tata Institute of Fundamental Research – TIFR, Mumbai, India.Google Scholar
Chajwa, R., Menon, N. & Ramaswamy, S. 2019 Kepler orbits in pairs of disks settling in a viscous fluid. Phys. Rev. Lett. 122 (22), 224501.10.1103/PhysRevLett.122.224501CrossRefGoogle Scholar
Chajwa, R., Menon, N., Ramaswamy, S. & Govindarajan, R. 2020 Waves, algebraic growth, and clumping in sedimenting disk arrays. Phys. Rev. X 10 (4), 041016.Google Scholar
Claeys, I.L. & Brady, J.F. 1993 Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech. 251, 411442.10.1017/S0022112093003465CrossRefGoogle Scholar
Crowley, J.M. 1971 Viscosity-induced instability of a one-dimensional lattice of falling spheres. J. Fluid Mech. 45 (1), 151159.10.1017/S0022112071003045CrossRefGoogle Scholar
Doi, M. & Makino, M. 2005 Sedimentation of particles of general shape. Phys. Fluids 17 (4), 043601.10.1063/1.1884625CrossRefGoogle Scholar
Drazer, G., Koplik, J., Khusid, B. & Acrivos, A. 2002 Deterministic and stochastic behaviour of non-brownian spheres in sheared suspensions. J. Fluid Mech. 460, 307335.10.1017/S0022112002008261CrossRefGoogle Scholar
Durlofsky, L., Brady, J.F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 2149.CrossRefGoogle Scholar
Fehlberg, E. 1969 Low-Order Classical Runge-Kutta Formulas with Stepsize Control and Their Application to Some Heat Transfer Problems, vol. 315. National aeronautics and space administration.Google Scholar
Gonzalez, O., Graf, A.B.A. & Maddocks, J.H. 2004 Dynamics of a rigid body in a Stokes fluid. J. Fluid Mech. 519, 133160.10.1017/S0022112004001284CrossRefGoogle Scholar
Guazzelli, É. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43 (1), 97116.10.1146/annurev-fluid-122109-160736CrossRefGoogle Scholar
Günther, F., Frijters, S. & Harting, J. 2014 Timescales of emulsion formation caused by anisotropic particles. Soft Matt. 10 (27), 49774989.CrossRefGoogle ScholarPubMed
Gustavsson, K. & Tornberg, A.-K. 2009 Gravity induced sedimentation of slender fibers. Phys. Fluids 21 (12), 123301.10.1063/1.3273091CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A. Containing Papers of a Mathematical and Physical Character 102 (715), 161179.Google Scholar
Joshi, H. & Govindarajan, R. 2025 Sedimentation dynamics of bodies with two planes of symmetry. Phys. Rev. Lett. 134, 014002.10.1103/PhysRevLett.134.014002CrossRefGoogle ScholarPubMed
Jung, S., Spagnolie, S.E., Parikh, K., Shelley, M. & Tornberg, A.-K. 2006 Periodic sedimentation in a Stokesian fluid. Phys. Rev. E 74, 035302.10.1103/PhysRevE.74.035302CrossRefGoogle Scholar
Kim, S. 1985 Sedimentation of two arbitrarily oriented spheroids in a viscous fluid. Intl J. Multiphase Flow 11 (5), 699712.10.1016/0301-9322(85)90087-4CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Koch, D.L. & Shaqfeh, E.S.G. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.10.1017/S0022112089003204CrossRefGoogle Scholar
Krapf, N.W., Witten, T.A. & Keim, N.C. 2009 Chiral sedimentation of extended objects in viscous media. Phys. Rev. E 79 (5), 056307.10.1103/PhysRevE.79.056307CrossRefGoogle ScholarPubMed
Ladd, A.J.C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 11911251.Google Scholar
Lahiri, R. & Ramaswamy, S. 1997 Are steadily moving crystals unstable? Phys. Rev. Lett. 79, 11501153.CrossRefGoogle Scholar
Mackaplow, M.B. & Shaqfeh, E.S.G. 1998 A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376, 149182.CrossRefGoogle Scholar
Mari, R., Seto, R., Morris, J.F. & Denn, M.M. 2014 Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58 (6), 16931724.10.1122/1.4890747CrossRefGoogle Scholar
Metzger, B., Guazzelli, É. & Butler, J.E. 2005 Large-scale streamers in the sedimentation of a dilute fiber suspension. Phys. Rev. Lett. 95 (16), 164506-1–164506-4.10.1103/PhysRevLett.95.164506CrossRefGoogle ScholarPubMed
Miara, T., Vaquero-Stainer, C., Pihler-Puzović, D., Heil, M. & Juel, A. 2024 Dynamics of inertialess sedimentation of a rigid U-shaped disk. Commun. Phys. 7 (1), 47.10.1038/s42005-024-01537-5CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.10.1063/1.3489987CrossRefGoogle Scholar
Reade, W.C. & Collins, L.R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.CrossRefGoogle Scholar
Shatz, L.F. 2004 Singularity method for oblate and prolate spheroids in stokes and linearized oscillatory flow. Phys. Fluids 16 (3), 664677.10.1063/1.1643402CrossRefGoogle Scholar
Townsend, A.K. 2017 The mechanics of suspensions PhD thesis, UCL (University College London), London, England.Google Scholar
Tozzi, E.J., Scott, C.T., Vahey, D. & Klingenberg, D.J. 2011 Settling dynamics of asymmetric rigid fibers. Phys. Fluids 23 (3), 033301-1–033301-10.10.1063/1.3562253CrossRefGoogle Scholar
Trefethen, L.N. 1997 Pseudospectra of linear operators. SIAM Rev. 39 (3), 383406.10.1137/S0036144595295284CrossRefGoogle Scholar
Witten, T.A. & Diamant, H. 2020 A review of shaped colloidal particles in fluids: anisotropy and chirality. Rep. Prog. Phys. 83 (11), 116601.Google ScholarPubMed