To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The crystal structure of resmetirom heminonahydrate Form CSI has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Form CSI had been described previously as a dihydrate. Resmetirom heminonahydrate Form CSI crystallizes in space group P-1 (#2) with a = 11.3094(23), b = 15.158(6), c = 16.570(7) Å, α = 67.405(13), β = 74.425(7), γ = 69.526(7)°, V = 2,427.2(4) Å3, and Z = 4 at 298 K. The crystal structure consists of layers of resmetirom molecules parallel to the bc-plane. These layers are separated by water-rich layers also parallel to the bc-plane. A strong N–H···O links the two resmetirom molecules. The equivalent amino group in the other molecule acts as a donor to a water molecule. A number of C–H···O and C–H···N hydrogen bonds also contribute to the lattice energy. Water molecules act as donors to both O and N in the resmetirom molecules. The structure is more complicated than a hydrogen-bonded framework of resmetirom molecules with water in the pores. The powder pattern has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File™ (PDF®).
The actuator line model (ALM) is an approach commonly used to represent lifting and dragging devices like wings and blades in large-eddy simulations (LES). The crux of the ALM is the projection of the actuator point forces onto the LES grid by means of a Gaussian regularisation kernel. The minimum width of the kernel is constrained by the grid size; however, for most practical applications like LES of wind turbines, this value is an order of magnitude larger than the optimal value that maximises accuracy. This discrepancy motivated the development of corrections for the actuator line, which, however, neglect the effect of unsteady spanwise shed vorticity. In this work we develop a model for the impact of spanwise shed vorticity on the unsteady loading of an aerofoil modelled as a Gaussian body force distribution, where the model is applicable within the regime of unsteady attached flow. The model solution is derived both in the time and frequency domain and features an explicit dependence on the Gaussian kernel width. We verify the model with ALM-LES for both pitch steps and periodic pitching. The model solution is compared withTheodorsen theory and validated with both computational fluid dynamics using body fitted grids and experiment. It is concluded that the optimal kernel width for unsteady aerodynamics is approximately $40\,\%$ of the chord. The ALM is able to predict the magnitude of the unsteady loading up to a reduced frequency of $k\approx 0.2$.
We report experiments in a long tank showing that transverse Benjamin–Feir instability of Stokes waves can lead to a significant energy transfer into oscillations across the tank. We observe frequency downshift in the long-term evolution of Stokes waves essentially when significant energy is transferred to narrow-banded transverse modes. Experiments with Stokes waves are often carried out with wavelengths that are not long compared with the width of the tank, permitting transverse instabilities to be excited. With insufficient resolution of measurements across the tank, transfer of energy to transverse modes can be misinterpreted as dissipation. Our experiments suggest that the frequency downshift depends as much on energy-preserving transverse modulations of type I as it does on damping or wave breaking. Broad-banded unstable modulations of type II do not imply downshift.
The crystal structure of fluvoxamine hydrogen maleate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Fluvoxamine maleate crystallizes in space group P21/c (#14) with a = 21.6310(15), b = 5.3180(4), c = 19.5555(15) Å, β = 99.979(5)°, V = 2,215.48(25) Å3, and Z = 4 at 298 K. The crystal structure consists of alternating double layers of cations and anions parallel to the bc-plane. Hydrogen bonds link the layers of anions and cations parallel to the bc-plane. The powder pattern has been submitted to the International Centre for Diffraction Data for inclusion in the Powder Diffraction File™ (PDF®).
Magnets have been utilised widely for their ability to induce rapid contact – such as snapping between magnets and ferromagnetic materials. Yet, how such interactions proceed under immersion in a viscous fluid remains poorly understood. Here, we study this problem using the classical configuration of a smooth solid sphere approaching a plane in a quiescent fluid. Induced magnetic attraction, a spatially varying force analogous to short-range dispersion forces, offers a plausible route to overcome the constraint of a diverging hydrodynamic drag, which is well understood using the framework of classical lubrication theory. Instinctively, one might expect it to enable finite-time contact. However, our experiments reveal a counterintuitive result: while magnetic forces accelerate the sphere towards the surface, reducing the approach time by two orders of magnitude compared with gravity, they ultimately fail to effectuate contact in finite time, as induced magnetic interactions are unable to mitigate lubrication drag, which is singular at the thin gap limit, and transitions to an exponential descent characteristic of constant forcing. We support these findings with a simple theoretical model that accurately predicts the magnetic force law from purely kinematic observations. Finally, we outline the conditions under which spatially varying forces can enable true finite-time contact and discuss future experimental directions.
The characterization of biological objects with microwave spectroscopy is getting increasing interests, as it is label-free and noninvasive. To perform their analysis, 2-port sensors are present in the literature, enabling only partial investigations of 3D biological samples, without taking their structural heterogeneity into account. Within this context, a 4-port microwave-based biosensor dedicated to microtissue characterization is proposed, in order to extend the sensing capabilities of microwave dielectric spectroscopy and provide electrical responses of 3D biological models subdivisions. An electrical model suitable for such a multiport device is established to extract the characteristics of the different sections of the 3D entity. The modeling methodology exploits the symmetry of the microwave component, while applying a common and differential modes approach derived from the measured 4 ports scattering parameters. After the mathematical validation of this approach, different elementary models are evaluated. Ethanol-based aqueous solutions are first used for their homogeneity within the fluidic channel. Polystyrene beads exhibiting two different diameter sizes are then numerically and experimentally investigated due to their 3D configuration and their uniform and known permittivity. This study demonstrates that the 4-port sensor and associated electrical model enable to consider electrical subdivisions of the 3D entity under test, based on the localization of the object on the different microwave electrodes. This constitutes the first step toward the analyses of complex and heterogeneous 3D biological models such as microtissues.
This work investigates the formation mechanism of the turbulent secondary vortex street (SVS) which appears in the far wake of bluff bodies, when the (primary) Kármán vortex street is absent. The turbulent wakes of four types of highly porous bluff bodies (plates/meshes) are characterised via time-resolved particle image velocimetry and large eddy simulations. The effect of ambient turbulence and initial conditions on SVS development is also examined, by installing a turbulence grid upstream of the bodies, and by varying the homogeneity of the bluff body porosity. Our results indicate that the SVS is a far-wake evolution of near-wake shear-layer vortices which, in the absence of the vortex shedding instability, continually grow and are finally arranged into alternating vortices. Free-stream turbulence and body inhomogeneity are found to significantly influence SVS development by amplifying mixing and attenuating the shear-layer instabilities of the near wake, which in turn lead to the formation of weaker and less coherent SVS structures further downstream.
We investigate the evolution of an external particle jet in a dense particle bed subjected to a radially divergent air-blast. Both random and single-mode perturbations are considered. By analysing the particle dynamics, we show that the Rayleigh–Taylor instability (RTI), the Richtmyer–Meshkov instability (RMI) and large particle inertia contribute to the formation of the external jet. The external particle jet exhibits a spike-like structure at its top and a bubble-like structure near its bottom. As the expanding particle bed lowers the internal gas pressure, particles near the bubble experience strong inward coupling forces and undergo RTI with variable acceleration. Meanwhile, particles in the spike experience weak gas–particle coupling and collision forces due to large particle inertia and low particle volume fraction, respectively. Consequently, the particles in the spike retain a nearly constant velocity, in contrast to the accelerating spikes observed in cylindrical RTI. To investigate the contributions of RMI to the particle jet growth, we track the trough-near particles in the single-mode perturbation case. It is revealed that the trough-near particles accelerate under the perturbation-induced pressure gradient, overtaking the crest-near particles and inducing phase inversion, thereby resulting in an increase in jet length. We establish a linear-growth model for the jet length increment, similar to the planar Richtmyer–Meshkov impulsive model. Combined with the jet-length-increment model, we propose an external-particle-jet-length model that is consistent with both numerical and experimental results for diverse initial gas pocket central pressures and particle bed thicknesses.
Asymptotic flow states with limiting drag modification are explored via direct numerical simulations in a moderate-curvature viscoelastic Taylor–Couette flow of the FENE-P fluid. We show that asymptotic drag modification (ADM) states are achieved at different solvent-to-total viscosity ratios ($\beta$) by gradually increasing the Weissenberg number from 10 to 150. As $\beta$ decreases from 0.99 to 0.90, for the first time, a continuous transition pathway is realised from the maximum drag reduction to the maximum drag enhancement, revealing a complete phase diagram of the ADM states. This transition originates from the competition between Reynolds stress reduction and polymer stress development, namely, a mechanistic change in angular momentum transport. Reduced $\beta$ has been found to effectively enhance elastic instability, suppressing large-scale Taylor vortices while promoting the formation of small-scale elastic Görtler vortices. The enhancement and in turn dominance of small-scale structures result in stronger incoherent transport, facilitating efficient mixing and substantial polymer stress development that ultimately drives the AMD state transition. Further analysis of the scale-decomposed transport equation of turbulent kinetic energy reveals an inverse energy cascade in the gap centre, which is attributed to the polymer-induced energy redistribution: polymers extract more energy from large scales than they can dissipate, with the excess energy redirected to smaller scales. However, the energy accumulating at smaller scales cannot be dissipated immediately and is consequently transferred back to larger scales via nonlinear interactions, thereby unravelling a novel polymer-mediated cycle for the reverse energy cascade. Overall, this study unravels the challenging puzzle of the existence of distinct dynamically connected ADM states and paves the way for coordinated experimental, simulation and theoretical studies of transition pathways to desired ADM states.
The guided-jet waves (GJWs) that may be trapped into a jet are investigated by simulating the propagation of the waves generated by an acoustic source on the axis of a jet at a Mach number of 0.95. The flow is modelled as a cylindrical shear layer to avoid reflections in the axial direction. For the source frequencies considered, GJWs belonging to the first two radial GJW axisymmetric modes are observed. They propagate in the upstream or downstream directions, and are entirely or partially contained in the flow, depending on the frequency. Their amplitudes are quantified. In the frequency–wavenumber space, they lie along the GJW dispersion curves predicted using linear-stability analysis. At specific spatial locations, they vary strongly and sharply with the frequency, exhibiting tonal-like peaks near the frequencies of the stationary points in the dispersion curves where the GJWs are standing waves with zero group velocity. Given the flow configuration, these properties can be attributed to propagation effects not requiring axial resonance between upstream- and downstream-travelling waves. Finally, it can be noted that, upstream of the source, outside the jet, the GJW amplitudes fluctuate in a reverse sawtooth manner with very intense peaks up to 30 dB higher than the levels obtained without flow at 10 jet radii from the source, similarly to the GJW footprints in the near-nozzle spectra of high-subsonic jets.
The growth of wall-mounted ice within channel flow which leads to a constriction is of significant practical relevance, especially in applications relating to aero-icing, large-scale pipe networks and mechanical systems. Whilst earlier works have treated ice constrictions as independent of the oncoming flow, few models explicitly account for the two-way coupling between the thermal and dynamical properties of the fluid and the evolving ice. To this end, the present work seeks to describe the interaction between high-Reynolds-number channel flow and constricting ice boundaries governed by Stefan conditions. Numerical simulations of the model indeed reveal that ice forming on the channel walls grows inwards towards the centreline and subsequently creates almost total constriction. In other parameter regimes, however, there is no ice formation. Using both a numerical and asymptotic approach, we identify regions of parameter space in which ice formation, and subsequently flow constriction, does or does not occur.
The clustering of inertial particles in turbulent flows is ubiquitous in many applications. This phenomenon is attributed to the influence of multiscale vortex structures in turbulent flows on particle motion. In this study, our primary goal is to further investigate the vortex effect on particle motion. We perform analytical and numerical simulations to examine the motion of particles in a counter-rotating vortex pair (CVP) with circulation ratio $\gamma \in (-1,0)$. The small, dilute, heavy inertial particles with a low particle Reynolds number are considered. In particular, the particle Stokes number and density factor satisfy $St\in (0,0.3)$ and $ R\in (0,1)$, respectively. We validate the existence of a particle-attracting ring within the CVP, which provides a simple mechanism for particle trapping. Meanwhile, there exists a critical Stokes number $St_{{cr}}$ limiting the occurrence of particle trapping. We provide a formula to predict the value of $St_{{cr}}$, which depends on both $\gamma$ and $R$. Only when $St\lt St_{{cr}}$ can the attracting ring trap the particle initially located within its basin of attraction and eventually lead to the formation of a particle clustering ring. Particles with a larger $R$ are more likely to be trapped in the CVP. While $St\gt St_{{cr}}$, the dynamics of the particles exhibits finite-time ‘leakage’. The attracting ring in the phase space coincides with the saddle point from which particles escape. Although all particles eventually escape, some may remain trapped in the vortex core region for a duration (represented by residence time). The distribution of residence time exhibits a localised exponential-like feature, indicating transient chaos.
In this paper, an ultra-wideband, low-scattering, and stable-gain Fabry–Perot antenna is proposed based on a novel hybrid metasurface. The radar cross-section (RCS) reduction is achieved by employing a 1-bit checkerboard polarization conversion metasurface (PCM) with a high polarization conversion ratio. Moreover, to enhance the antenna gain, broaden the 3-dB gain bandwidth, and maintain stable gain performance within the passband, a nonuniform reflective metasurface with a positively sloped reflection phase is strategically introduced. This metasurface, combined with the tessellated PCM layer, forms a hybrid structure featuring high transmission efficiency. Benefiting from this hybrid metasurface design, the antenna demonstrates a maximum gain enhancement of 4.7 dBi, an average gain improvement of 2.7 dBi, and a 39.8% increase in the 3-dB gain bandwidth. To validate the proposed design methodology, a prototype antenna was fabricated and experimentally measured. The measured results show good agreement with the simulated predictions. Specifically, the fabricated antenna exhibits a –10 dB impedance bandwidth of 22.47% (7.23–9.06 GHz), a 3-dB gain bandwidth of 18.2% (7–8.4 GHz), and a maximum gain of 17.25 dBi at 7.2 GHz. Additionally, the antenna achieves an RCS reduction bandwidth of 102.3%, with a maximum RCS reduction of 35.3 dB at 13.03 GHz.
Inspired by small intestine motility, we investigate the flow induced by a propagating pendular wave along the walls of a channel lined with rigid, villi-like microstructures. The villi undergo harmonic axial oscillations with a phase lag relative to their neighbours, generating travelling patterns of intervillous contraction. Using two-dimensional lattice Boltzmann simulations, we resolve the flow within the villi zone and the lumen, sampling small to moderate Womersley numbers. We uncover a mixing boundary layer (MBL) just above the villi, composed of semi-vortical structures that travel with the imposed wave. In the lumen, an axial steady flow emerges, surprisingly oriented opposite to the wave propagation direction, contrary to canonical peristaltic flows. We attribute this flow reversal to the non-reciprocal trajectories of fluid trapped between adjacent villi and derive a geometric scaling law that captures its magnitude in the Stokes regime. The MBL thickness is found to depend solely on the wave kinematics given by intervillous phase lag in the low-inertia limit. Above a critical threshold, oscillatory inertia induces dynamic confinement, limiting the radial extent of the MBL and leading to non-monotonic behaviour of the axial steady flux. We further develop an effective boundary condition at the villus tips, incorporating both steady and oscillatory components across relevant spatial scales. This framework enables coarse-grained simulations of intestinal flows without resolving individual villi. Our results shed light on the interplay among active microstructure, pendular wave and finite inertia in biological flows, and suggests new avenues for flow control in biomimetic and microfluidic systems.
The electrokinetic and unstable behaviour near strongly polarised surfaces cannot be well captured by the canonical asymptotic theory for induced-charge electro-osmosis, and the intrinsic mechanism remains unclear. Using direct numerical simulations and scaling analysis, this paper reveals that, near the strongly polarised surfaces, the strong electric double layer charging induces a strong local electric field, which drives the cations in the electrical double layer to extend to a finite region and form an extended space-charge (ESC) layer. The ESC triggers flow instability near strongly polarised surfaces, causing a transition of the velocity scaling exponent in the electric field dependence from a 2 to a 4/3 power law. The findings and mechanisms pave the way for designs of energy and biomedical systems.
Single-cell tornado-like vortices (TLVs) exhibit periodic wandering fluctuations around the time-averaged vortex core, a phenomenon known as vortex wandering, which constitutes the most prominent periodic behaviour in such flows. The coupling between vortex motion and wandering creates complex swirl dynamics, posing significant analytical challenges. However, the limited availability of experimental studies on vortex wandering decomposition hampers a deeper understanding of this phenomenon. To address this gap, a tornado simulator was designed to generate a controllable single-cell TLV, and high-frequency velocity data were obtained using particle image velocimetry. A sparsity-promoting dynamic mode decomposition (sp-DMD) method was developed to decouple coherent structures and analyse dynamic characteristics. Results show that as the swirl ratio increases, the vortex structure becomes more diffuse, with significant reductions in intensity. Vortex wandering is present across all swirl conditions, with its periodicity strongly modulated by the swirl ratio. Importantly, sp-DMD identified two primary modes, the time-averaged mode (first mode), representing the dominant rotational vortex motion, and the vortex-wandering-dominated modes (second and third conjugate modes), which correspond to persistent periodic velocity fluctuations and contribute the most significant pulsations. These modes exhibit a pair of oppositely rotating vortices symmetrically revolving around the central flow axis. Visualisations of the Q criterion reveal a symmetric dipole pattern. This suggests that rotational and shear effects are likely responsible for the periodic movement of the vortex core. Furthermore, as the swirl ratio increases, the energy of the vortex-wandering-dominated modes diminishes, and motion transitions from high-energy, organised dynamics to low-energy, disordered behaviour.
This paper presents an experimental and analytical investigation of the turbulent transport and flame geometric characteristics of free turbulent buoyant diffusion flames under different fuel mass fluxes and burner boundary conditions (i.e. with/without a flush floor). The stereo particle image velocimetry technique was utilised to measure the three-dimensional instantaneous velocity fields of the free methane buoyant flames with a burner diameter (d) of 0.30 m and dimensionless heat release rates ($\dot{Q}^{*}$) of 0.50–0.90. The results showed that, compared with the configuration without a floor, the time-averaged axial velocity fluctuations squared and the time-averaged radial velocity fluctuations squared decreased, and the peak values of the time-averaged radial velocity, the time-averaged radial velocity fluctuations squared and the time-averaged axial and radial fluctuation product shifted towards the burner centreline in the configuration with a flush floor. Based on the dimensional analysis and the gradient transport assumption, the mean turbulent viscosity within the mean flame height ($\nu _{t}^{=}$) was scaled. Compared with the configuration without a floor of under equal $\dot{Q}^{*}$, the turbulent viscosity decreased in the configuration with a flush floor, resulting in an increase in mean flame height and a reduction in mean flame width. Based on the concepts of turbulent mixing and equal axial convection and radial diffusion times, semi-physical models were derived for the mean flame height and the mean flame width, respectively. The two correlations agreed well with the experimental data of this work for the two burner configurations with and without a flush floor.
Stress–velocity cross-spectra provide critical insights into the wall turbulence dynamics, where second-order cross-spectra have been used to characterise the amplitude modulation of large-scale motions on smaller scales. Here, we investigate the higher-order stress–velocity cross-spectra. Through theoretical analysis, we derive an exact relationship demonstrating that the difference in convection velocity between streamwise Reynolds normal stress fluctuations ($r$) and streamwise velocity fluctuations ($u$) – termed the $r{-}u$ convection velocity difference – is governed jointly by the second- and fourth-order cross-spectra. A new ‘coherence similarity’ (CS) model is proposed, which reveals an approximate similarity between higher-order and second-order cross-spectra. As a result, the $r{-}u$ convection velocity difference can be explained in terms of second-order cross-spectral properties. Numerical validation confirms that the CS model predicts higher-order cross-spectra and the convection velocity difference accurately. Furthermore, the contours of stress–velocity cross-spectra undergo a structural transition from single-lobe to triple-lobe patterns with increasing wall distance, suggesting the presence of complex space–time coupling between $r$ and $u$.
This study uses a coupled lattice Boltzmann and discrete element method to perform interface-resolved simulations of turbulent channel flow laden with finite-size cylindrical particles. The aim is to investigate interactions between wall-bounded turbulence and non-spherical particles with sharp edges. The particle-to-fluid density ratio is unity and gravity is neglected. Comparative analyses are conducted among long (length-to-diameter aspect ratio 2), unit (1) and short ($ 1/2 $) cylinders, along with spheres and literature data for spheroids. Results reveal both shared and distinct dynamic behaviours of cylinders and their effects on turbulence modulation. Notably, disk-like short cylinders can remain trapped near the wall due to their flat faces aligning closely with it – a behaviour unique to particles with sharp edges. Long and unit cylinders, as well as spheres, preferentially accumulate in high-speed streaks, while short cylinders cluster in low-speed streaks, demonstrating a strong aspect-ratio effect. Near the wall, long cylinders align their axis with the streamwise direction, while short cylinders orient perpendicular to the wall. Rotationally, long cylinders primarily spin, whereas short ones predominantly tumble. These trends arise from orientation preferences and differences in axial and spanwise moments of inertia. Cylindrical particles increase wall drag compared with the single-phase case, with short cylinders causing the greatest enhancement due to strong near-wall accumulation. Overall, the influence of aspect ratio on particle dynamics and turbulence modulation is more pronounced for cylindrical particles than for spheroidal ones.
Adapting Barker’s ((2019). The Journal of Navigation, 72(3), 539–554) taxonomy of wayfinding behaviours – originally developed for man-made environments, paper and screen – we examined which behaviours are also found in the outdoors. In the analysis of the collected data from a questionnaire (n=401), we find that participants employ every category in Barker’s framework of social, semantic and spatial behaviours. Our respondents report the use of digital maps on a mobile phone as the most common behaviour, with following directional signs as the second most used. Furthermore, social wayfinding behaviours figure prominently and the participants express preferences for various information sources. We demonstrate similarities of behaviours across the different types of environments and we confirm the applicability of Barker’s taxonomy of wayfinding behaviours also in nature. Our study generates knowledge that potentially can make navigation simpler and more efficient through wayfinding design, and lead to heightened feeling of safety in the outdoors. Wayfinding behaviour studies, like this one, can serve as a bridge between human psychology and practical design.