Hostname: page-component-857557d7f7-zntvd Total loading time: 0 Render date: 2025-11-26T09:09:53.676Z Has data issue: false hasContentIssue false

Effects of fuel mass flux and burner boundary condition on turbulent transport properties and flame shape of free turbulent buoyant diffusion flames

Published online by Cambridge University Press:  26 November 2025

Yukui Yuan
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China MEM Key Laboratory of Forest Fire Monitoring and Warning, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China
Jiao Lei*
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China MEM Key Laboratory of Forest Fire Monitoring and Warning, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China
Naian Liu
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China MEM Key Laboratory of Forest Fire Monitoring and Warning, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China
Wei Gao
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China MEM Key Laboratory of Forest Fire Monitoring and Warning, University of Science and Technology of China , Jin Zhai Road 96, Hefei, Anhui 230026, PR China
*
Corresponding author: Jiao Lei, leijiao@ustc.edu.cn

Abstract

This paper presents an experimental and analytical investigation of the turbulent transport and flame geometric characteristics of free turbulent buoyant diffusion flames under different fuel mass fluxes and burner boundary conditions (i.e. with/without a flush floor). The stereo particle image velocimetry technique was utilised to measure the three-dimensional instantaneous velocity fields of the free methane buoyant flames with a burner diameter (d) of 0.30 m and dimensionless heat release rates ($\dot{Q}^{*}$) of 0.50–0.90. The results showed that, compared with the configuration without a floor, the time-averaged axial velocity fluctuations squared and the time-averaged radial velocity fluctuations squared decreased, and the peak values of the time-averaged radial velocity, the time-averaged radial velocity fluctuations squared and the time-averaged axial and radial fluctuation product shifted towards the burner centreline in the configuration with a flush floor. Based on the dimensional analysis and the gradient transport assumption, the mean turbulent viscosity within the mean flame height ($\nu _{t}^{=}$) was scaled. Compared with the configuration without a floor of under equal $\dot{Q}^{*}$, the turbulent viscosity decreased in the configuration with a flush floor, resulting in an increase in mean flame height and a reduction in mean flame width. Based on the concepts of turbulent mixing and equal axial convection and radial diffusion times, semi-physical models were derived for the mean flame height and the mean flame width, respectively. The two correlations agreed well with the experimental data of this work for the two burner configurations with and without a flush floor.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arpaci, V.S. & Selamet, A. 1991 Buoyancy-driven turbulent diffusion flames. Combust. Flame 86 (3), 203215.10.1016/0010-2180(91)90100-PCrossRefGoogle Scholar
Ban, H., Venkatesh, S. & Saito, K. 1994 Convection-diffusion controlled laminar micro flames. J. Heat Transfer 116 (4), 954959.10.1115/1.2911471CrossRefGoogle Scholar
Beyler, C.L. 2016 Fire hazard calculations for large, open hydrocarbon fires. In SFPE Handbook of Fire Protection Engineering. Fifth edn, pp. 25912663. Springer.10.1007/978-1-4939-2565-0_66CrossRefGoogle Scholar
Bhaganagar, K. & Bhimireddy, S.R. 2020 Numerical investigation of starting turbulent buoyant plumes released in neutral atmosphere. J. Fluid Mech. 900, A32.10.1017/jfm.2020.474CrossRefGoogle Scholar
Bilger, R.W. 1989 Turbulent diffusion flames. Ann. Rev. Fluid Mech. 21, 101135.10.1146/annurev.fl.21.010189.000533CrossRefGoogle Scholar
Borghi, R. 1988 Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245292.10.1016/0360-1285(88)90015-9CrossRefGoogle Scholar
Cetegen, B.M. 1982 Entrainment and Flame Geometry of Fire Plumes. California Institute of Technology.Google Scholar
Cetegen, B.M., Zukoski, E.E. & Kubota, T. 1984 Entrainment in the near and far field of fire plumes. Combust. Sci. Technol. 39, 305331.10.1080/00102208408923794CrossRefGoogle Scholar
Chuah, K.H., Kuwana, K., Saito, K. & Williams, F.A. 2011 Inclined fire whirls. Proc. Combust. Inst. 33, 24172424.10.1016/j.proci.2010.05.102CrossRefGoogle Scholar
Database, N.F.C. 2020 NIST fire calorimetry database.Google Scholar
Delichatsios, M.A. 1987 Air entrainment into buoyant jet flames and pool fires. Combust. Flame 70, 3346.10.1016/0010-2180(87)90157-XCrossRefGoogle Scholar
Delichatsios, M.A. 1993 Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships. Combust. Flame 92, 349364.10.1016/0010-2180(93)90148-VCrossRefGoogle Scholar
Dimotakis, P.E. 2005 Turbulent mixing. Ann. Rev. Fluid Mech. 37, 329356.10.1146/annurev.fluid.36.050802.122015CrossRefGoogle Scholar
Drysdale, D. 2011 An Introduction to Fire Dynamics. John Wiley & Sons, 42–47, 121–122.Google Scholar
Ezzamel, A., Salizzoni, P. & Hunt, G.R. 2015 Dynamical variability of axisymmetric buoyant plumes. J. Fluid Mech. 765, 576611.10.1017/jfm.2014.694CrossRefGoogle Scholar
Finney, M.A., McAllister, S.S., Forthofer, J.M. & Grumstrup, T.P. 2021 Wildland Fire Behaviour, Dynamics, Principles and Processes. CSIRO publishing. pp. 37.10.1071/9781486309092CrossRefGoogle Scholar
Hasemi, Y. & Nishihata, M. 1987 Deterministic properties of turbulent diffusion flames from low Q* fires. Fire Sci. Technol. 7, 2734.10.3210/fst.7.2_27CrossRefGoogle Scholar
Hasemi, Y. & Tokunaga, T. 1984 Flame geometry effects on the buoyant plumes from turbulent diffusion flames. Fire Sci. Technol. 4, 1526.10.3210/fst.4.15CrossRefGoogle Scholar
Hawthorne, W.R., Weddell, D.S. & Hottel, H.C. 1948 Mixing and combustion in turbulent gas jets. In Symposium On Combustion and Flame, and Explosion Phenomena. vol. 3, pp. 266288.Google Scholar
Heskestad, G. 1988 Fire plume air entrainment according to two competing assumptions. Symp. (Int.) Combust. 21, 111120.10.1016/S0082-0784(88)80237-6CrossRefGoogle Scholar
Heskestad, G. 1998 Dynamics of the fire plume. Phil. Trans. R. Soc. London A 356, 28152833.10.1098/rsta.1998.0299CrossRefGoogle Scholar
Jiang, X. & Luo, K.H. 2000 Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst. 28, 19891995.10.1016/S0082-0784(00)80605-0CrossRefGoogle Scholar
Jiang, X. & Luo, K.H. 2001 Spatial DNS of flow transition of a rectangular buoyant reacting free-jet* . J. Turb. 2, 015.10.1088/1468-5248/2/1/015CrossRefGoogle Scholar
Jost, W. 1946 Flames of gases not premixed. In Explosion and Combustion Processes in Gases, McGraw-Hill New York, pp. 212.Google Scholar
Katopodes, N.D. 2019 Free-Surface Flow. In Turbulent flow. Butterworth-Heinemann, pp. 566650.Google Scholar
Knott, G.M. & Brewster, M.Q. 2000 Two-dimensional combustion modeling of heterogeneous solid propellants with finite peclet number. Combust. Flame 121, 91106.10.1016/S0010-2180(99)00150-9CrossRefGoogle Scholar
Kundu, P.K., Cohen, I.M. & Dowling, D.R. 2016 Turbulence. In Fluid Mechanics, Sixth edn. pp. 603697, Academic Press.10.1016/B978-0-12-405935-1.00012-5CrossRefGoogle Scholar
Lee, S.R. & Chung, S.H. 1991 Effect of streamwise and preferential diffusion on cylindrical Burke–Schumann flames. KSME J. 5, 4552.10.1007/BF02945150CrossRefGoogle Scholar
Lei, J., Deng, W., Liu, Z., Mao, S., Saito, K. et al. 2022 a Experimental study on burning rates of large-scale hydrocarbon pool fires under controlled wind conditions. Fire Saf. J. 127, 103517.10.1016/j.firesaf.2021.103517CrossRefGoogle Scholar
Lei, J., Huang, P., Liu, N. & Zhang, L. 2022 b On the flame width of turbulent fire whirls. Combust. Flame 244, 112285.10.1016/j.combustflame.2022.112285CrossRefGoogle Scholar
Lei, J. & Liu, N. 2017 Scaling flame height of fully turbulent pool fires based on the turbulent transport properties. Proc. Combust. Inst. 36, 31393148.10.1016/j.proci.2016.06.135CrossRefGoogle Scholar
Liu, P., Zhang, H., Wu, Y., Zhang, M. & Lu, J. 2017 Experimental study on the flow interaction of two parallel rectangular jets through exits with sudden contraction. Exp. Therm. Fluid Sci. 88, 622631.10.1016/j.expthermflusci.2017.07.018CrossRefGoogle Scholar
Luketa, A. & Blanchat, T. 2015 The phoenix series large-scale methane gas burner experiments and liquid methane pool fires experiments on water. Combust. Flame 162, 44974513.10.1016/j.combustflame.2015.08.025CrossRefGoogle Scholar
Ma, L., Nmira, F. & Consalvi, J.-L. 2020 Large eddy simulation of medium-scale methanol pool fires - effects of pool boundary conditions. Combust. Flame 222, 336354.10.1016/j.combustflame.2020.09.007CrossRefGoogle Scholar
Mahalingam, S. 1993 Self-similar diffusion flame including effects of streamwise diffusion. Combust. Sci. Technol. 89, 363373.10.1080/00102209308924119CrossRefGoogle Scholar
McCaffrey, B.J. 1979 Purely buoyant diffusion flames: some experimental results, NBSIR 79-1910. National Institute of Standards and Technology.10.6028/NBS.IR.79-1910CrossRefGoogle Scholar
McCaffrey, B.J. 1983 Momentum implications for buoyant diffusion flames. Combust. Flame 52, 149167.10.1016/0010-2180(83)90129-3CrossRefGoogle Scholar
Meehan, M.A. & Hamlington, P.E. 2023 Richardson and Reynolds number effects on the near field of buoyant plumes, flow statistics and fluxes. J. Fluid Mech. 961, A7.10.1017/jfm.2023.208CrossRefGoogle Scholar
Moreno-Boza, D., Coenen, W., Carpio, J., Sánchez, A.L. & Williams, F.A. 2018 On the critical conditions for pool-fire puffing. Combust. Flame 192, 426438.10.1016/j.combustflame.2018.02.011CrossRefGoogle Scholar
Ohlemiller, T.J. & Shields, J.R. 2008 Assessment of Medium-Scale, Polyurethane Foam Flammability Test. NIST Technical Note 1495.10.6028/NIST.TN.1495CrossRefGoogle Scholar
Pham, M.V., Plourde, F. & Kim, S.D. 2005 Three-dimensional characterization of a pure thermal plume. J. Heat Transfer 127, 624636.10.1115/1.1863275CrossRefGoogle Scholar
Quintiere, J. 2006 Fundamentals of Fire Phenomena. vol. 298. John Wiley & Sons Ltd, 11-11–12.Google Scholar
Saito, K., Williams, F.A. & Gordon, A.S. 1986 Effects of oxygen on soot formation in methane diffusion flames. Combust. Sci. Technol. 47, 117138.10.1080/00102208608923869CrossRefGoogle Scholar
Shabbir, A. & George, W.K. 2006 Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275, 132.10.1017/S0022112094002260CrossRefGoogle Scholar
Sunderland, P.B., Mendelson, B.J., Yuan, Z.G. & Urban, D.L. 1999 Shapes of buoyant and nonbuoyant laminar jet diffusion flames. Combust. Flame 116, 376386.10.1016/S0010-2180(98)00045-5CrossRefGoogle Scholar
Tang, F., Hu, L., Zhang, X., Zhang, X. & Dong, M. 2015 Burning rate and flame tilt characteristics of radiation-controlled rectangular hydrocarbon pool fires with cross air flows in a reduced pressure. Fuel 139, 1825.10.1016/j.fuel.2014.07.093CrossRefGoogle Scholar
Tieszen, S.R., O.’Hern, T.J., Weckman, E.J. & Schefer, R.W. 2004 Experimental study of the effect of fuel mass flux on a 1-m-diameter methane fire and comparison with a hydrogen fire. Combust. Flame 139, 126141.10.1016/j.combustflame.2004.08.006CrossRefGoogle Scholar
Tieszen, S.R., O’.Hern, T.J., Schefer, R.W., Weckman, E.J. & Blanchat, T.K. 2002 Experimental study of the flow field in and around a one meter diameter methane fire. Combust. Flame 129, 378391.10.1016/S0010-2180(02)00352-8CrossRefGoogle Scholar
Times, T.J. 2021/10/11 Lebanon firefighters quell fuel tank fire.10.1016/S1464-2859(21)00513-7CrossRefGoogle Scholar
Weckman, E.J. & Sobiesiak, A. 1989 The oscillatory behaviour of medium-scale pool fires. Symp. (Int.) Combust. 22, 12991310.10.1016/S0082-0784(89)80141-9CrossRefGoogle Scholar
Weckman, E.J. & Strong, A.B. 1996 Experimental investigation of the turbulence structure of medium-scale methanol pool fires. Combust. Flame 105, 245266.10.1016/0010-2180(95)00103-4CrossRefGoogle Scholar
Welch, S., Paul, S.C. & Torero, J.L. 2010 Modelling fire growth and toxic gas formation. In Fire Toxicity, pp. 637667. Woodhead Publishing.10.1533/9781845698072.6.637CrossRefGoogle Scholar
Xia, X. & Zhang, P. 2018 A vortex-dynamical scaling theory for flickering buoyant diffusion flames. J. Fluid Mech. 855, 11561169.10.1017/jfm.2018.707CrossRefGoogle Scholar
Yuan, Y., Lei, J. & Liu, N. 2024 Experimental research on the flow field and flame geometry of free buoyant diffusion flames with low dimensionless heat release rates. Combust. Flame 269, 113659.10.1016/j.combustflame.2024.113659CrossRefGoogle Scholar
Zukoski, E.E., Cetegen, B.M. & Kubota, T. 1985 Visible structure of buoyant diffusion flames. Symp. (Int.) Combust. 20, 361366.10.1016/S0082-0784(85)80522-1CrossRefGoogle Scholar
Zukoski, E.E., Kubota, T. & Cetegen, B. 1981 Entrainment in fire plumes. Fire Saf. J. 3, 107121.10.1016/0379-7112(81)90037-0CrossRefGoogle Scholar