Single-cell tornado-like vortices (TLVs) exhibit periodic wandering fluctuations around the time-averaged vortex core, a phenomenon known as vortex wandering, which constitutes the most prominent periodic behaviour in such flows. The coupling between vortex motion and wandering creates complex swirl dynamics, posing significant analytical challenges. However, the limited availability of experimental studies on vortex wandering decomposition hampers a deeper understanding of this phenomenon. To address this gap, a tornado simulator was designed to generate a controllable single-cell TLV, and high-frequency velocity data were obtained using particle image velocimetry. A sparsity-promoting dynamic mode decomposition (sp-DMD) method was developed to decouple coherent structures and analyse dynamic characteristics. Results show that as the swirl ratio increases, the vortex structure becomes more diffuse, with significant reductions in intensity. Vortex wandering is present across all swirl conditions, with its periodicity strongly modulated by the swirl ratio. Importantly, sp-DMD identified two primary modes, the time-averaged mode (first mode), representing the dominant rotational vortex motion, and the vortex-wandering-dominated modes (second and third conjugate modes), which correspond to persistent periodic velocity fluctuations and contribute the most significant pulsations. These modes exhibit a pair of oppositely rotating vortices symmetrically revolving around the central flow axis. Visualisations of the Q criterion reveal a symmetric dipole pattern. This suggests that rotational and shear effects are likely responsible for the periodic movement of the vortex core. Furthermore, as the swirl ratio increases, the energy of the vortex-wandering-dominated modes diminishes, and motion transitions from high-energy, organised dynamics to low-energy, disordered behaviour.