Hostname: page-component-857557d7f7-gtc7z Total loading time: 0.001 Render date: 2025-11-26T09:09:25.164Z Has data issue: false hasContentIssue false

Turbulent channel flow laden with finite-size cylindrical particles

Published online by Cambridge University Press:  26 November 2025

Zehua Zhang
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
Yu Guo
Affiliation:
Department of Engineering Mechanics, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Cheng Peng*
Affiliation:
Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University , Jinan 250061, PR China
Lian-Ping Wang
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
*
Corresponding author: Cheng Peng, pengcheng@sdu.edu.cn

Abstract

This study uses a coupled lattice Boltzmann and discrete element method to perform interface-resolved simulations of turbulent channel flow laden with finite-size cylindrical particles. The aim is to investigate interactions between wall-bounded turbulence and non-spherical particles with sharp edges. The particle-to-fluid density ratio is unity and gravity is neglected. Comparative analyses are conducted among long (length-to-diameter aspect ratio 2), unit (1) and short ($ 1/2 $) cylinders, along with spheres and literature data for spheroids. Results reveal both shared and distinct dynamic behaviours of cylinders and their effects on turbulence modulation. Notably, disk-like short cylinders can remain trapped near the wall due to their flat faces aligning closely with it – a behaviour unique to particles with sharp edges. Long and unit cylinders, as well as spheres, preferentially accumulate in high-speed streaks, while short cylinders cluster in low-speed streaks, demonstrating a strong aspect-ratio effect. Near the wall, long cylinders align their axis with the streamwise direction, while short cylinders orient perpendicular to the wall. Rotationally, long cylinders primarily spin, whereas short ones predominantly tumble. These trends arise from orientation preferences and differences in axial and spanwise moments of inertia. Cylindrical particles increase wall drag compared with the single-phase case, with short cylinders causing the greatest enhancement due to strong near-wall accumulation. Overall, the influence of aspect ratio on particle dynamics and turbulence modulation is more pronounced for cylindrical particles than for spheroidal ones.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ardekani, M.N. & Brandt, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859, 887901.10.1017/jfm.2018.854CrossRefGoogle Scholar
Ardekani, M.N., Costa, P., Breugem, W.-P., Picano, F. & Brandt, L. 2017 Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 4370.10.1017/jfm.2017.68CrossRefGoogle Scholar
Baker, L.J. & Coletti, F. 2022 Experimental investigation of inertial fibres and disks in a turbulent boundary layer. J. Fluid Mech. 943, A27.10.1017/jfm.2022.438CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Berk, T. & Coletti, F. 2023 Dynamics and scaling of particle streaks in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 975, A47.10.1017/jfm.2023.885CrossRefGoogle Scholar
Bouzidi, M., Firdaouss, M. & Lallemand, P. 2001 Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13 (11), 34523459.10.1063/1.1399290CrossRefGoogle Scholar
Brändle De Motta, J.C. et al. 2019 Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows. Comput. Fluids 179, 114.10.1016/j.compfluid.2018.10.016CrossRefGoogle Scholar
Brändle de Motta, J.C., Breugem, W.-P., Gazanion, B., Estivalezes, J.-L., Vincent, S.Climent, E. 2013 Numerical modelling of finite-size particle collisions in a viscous fluid. Phys. Fluids 25 (8), 083302.10.1063/1.4817382CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.10.1146/annurev-fluid-030121-021103CrossRefGoogle Scholar
Bretherton, F.P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (2), 284304.10.1017/S002211206200124XCrossRefGoogle Scholar
Breugem, W.-P. 2010 A combined soft-sphere collision/immersed boundary method for resolved simulations of particulate flows. In ASME. 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, pp. 23812392. American Society of Mechanical Engineers Digital Collection.10.1115/FEDSM-ICNMM2010-30634CrossRefGoogle Scholar
Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27 (3), 035101.10.1063/1.4913501CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2015 a Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.10.1017/jfm.2015.38CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2015 b Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27 (6), 061703.10.1063/1.4922864CrossRefGoogle Scholar
Costa, P., Picano, F., Brandt, L. & Breugem, W.-P. 2016 Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117 (13), 134501.10.1103/PhysRevLett.117.134501CrossRefGoogle ScholarPubMed
Cox, R.G. 1971 The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech. 45 (4), 625657.10.1017/S0022112071000259CrossRefGoogle Scholar
Cox, R.G. 1970 The motion of long slender bodies in a viscous fluid Part 1. General theory. J. Fluid Mech. 44 (4), 791810.10.1017/S002211207000215XCrossRefGoogle Scholar
Diebel, J., et al. 2006 Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58 (15–16), 135.Google Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A.V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89 (1), 013006.10.1103/PhysRevE.89.013006CrossRefGoogle ScholarPubMed
Eshghinejadfard, A., Abdelsamie, A., Hosseini, S.A. & Thévenin, D. 2017 Immersed boundary lattice Boltzmann simulation of turbulent channel flows in the presence of spherical particles. Intl J. Multiphase Flow 96, 161172.10.1016/j.ijmultiphaseflow.2017.07.011CrossRefGoogle Scholar
Eshghinejadfard, A., Zhao, L. & Thévenin, D. 2018 Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence. J. Fluid Mech. 849, 510540.10.1017/jfm.2018.441CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.10.1017/jfm.2019.355CrossRefGoogle Scholar
Gao, H., Li, H. & Wang, L.-P. 2013 Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Maths Appl. 65 (2), 194210.10.1016/j.camwa.2011.06.028CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B. & Curtis, J. 2012 Some computational considerations associated with discrete element modeling of cylindrical particles. Powder Technol. 228, 193198.10.1016/j.powtec.2012.05.015CrossRefGoogle Scholar
Jeffery, G.B. 1922 a The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A, Containing Pap. Math. Phys. Character 102 (715), 161179.Google Scholar
Jeffery, G.B. 1922 b The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A, Containing Pap. Math. Phys. Character 102 (715), 161179.Google Scholar
Kharrouba, M., Pierson, J.-L. & Magnaudet, J. 2021 Flow structure and loads over inclined cylindrical rodlike particles and fibers. Phys. Rev. Fluids 6 (4), 044308.10.1103/PhysRevFluids.6.044308CrossRefGoogle Scholar
Kidanemariam, A.G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.10.1088/1367-2630/15/2/025031CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R.D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892CrossRefGoogle Scholar
Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B. & Wassgren, C. 2010 Cylindrical object contact detection for use in discrete element method simulations. Part I – contact detection algorithms. Chem. Engng Sci. 65 (22), 58525862.10.1016/j.ces.2010.08.006CrossRefGoogle Scholar
Liu, Y., Guo, Y., Yang, B., Pan, D., Xia, Z., Yu, Z. & Wang, L.-P. 2023 Three-dimensional sedimentation patterns of two interacting disks in a viscous fluid. J. Fluid Mech. 960, A25.10.1017/jfm.2023.186CrossRefGoogle Scholar
Marchioli, C., et al. 2025 Particle-laden flows. Intl J. Multiphase Flow 191, 105291.10.1016/j.ijmultiphaseflow.2025.105291CrossRefGoogle Scholar
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.10.1063/1.3328874CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.10.1017/S0022112002001738CrossRefGoogle Scholar
Marchioli, C., Zhao, L. & Andersson, H.I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28 (1), 013301.10.1063/1.4937757CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20 (9), 093302.10.1063/1.2975209CrossRefGoogle Scholar
Brändle de Motta, J.C., Breugem, W.-P., Gazanion, B., Estivalezes, J.-L., Vincent, S.Climent, E. 2013 Numerical modelling of finite-size particle collisions in a viscous fluid. Phys. Fluids 25 (8), 083302.10.1063/1.4817382CrossRefGoogle Scholar
Niño, Y. & Garcia, M.H. 1996 Experiments on particle – turbulence interactions in the near–wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.10.1017/S0022112096008324CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.10.1103/PhysRevLett.109.134501CrossRefGoogle ScholarPubMed
Parsa, S. & Voth, G.A. 2014 Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112 (2), 024501.10.1103/PhysRevLett.112.024501CrossRefGoogle ScholarPubMed
Peng, C., Ayala, O.M. & Wang, L.-P. 2019 A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech. 875, 10961144.10.1017/jfm.2019.509CrossRefGoogle Scholar
Peng, C., Karzhaubayev, K., Wang, L.-P., Chen, S. & Niu, Z. 2025 Settling of finite-size particles in homogeneous isotropic turbulence: the influence of particle inertia and a unified predictive model. J. Fluid Mech. 1016, A63.10.1017/jfm.2025.10460CrossRefGoogle Scholar
Peng, C., Teng, Y., Hwang, B., Guo, Z. & Wang, L.-P. 2016 Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Maths Appl. 72 (2), 349374.10.1016/j.camwa.2015.08.027CrossRefGoogle Scholar
Peng, C. & Wang, L.-P. 2019 Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally buoyant particles at low flow Reynolds number. Acta Mech. 230 (2), 517539.10.1007/s00707-018-2268-2CrossRefGoogle Scholar
Peng, C., Wang, L.-P. & Chen, S. 2024 Preferential accumulation of finite-size particles in near-wall streaks. J. Fluid Mech. 980, A38.10.1017/jfm.2024.41CrossRefGoogle Scholar
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.10.1017/jfm.2014.704CrossRefGoogle Scholar
Saffman, P.G.T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.10.1017/S0022112065000824CrossRefGoogle Scholar
Shaik, S., Kuperman, S., Rinsky, V. & van Hout, R. 2020 Measurements of length effects on the dynamics of rigid fibers in a turbulent channel flow. Phys. Rev. Fluids 5 (11), 114309.10.1103/PhysRevFluids.5.114309CrossRefGoogle Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.10.1017/jfm.2011.533CrossRefGoogle Scholar
Suzuki, Y., Ikenoya, M. & Kasagi, N. 2000 Simultaneous measurement of fluid and dispersed phases in a particle-laden turbulent channel flow with the aid of 3-D PTV. Exp. Fluids 29 (Suppl 1), S185S193.10.1007/s003480070020CrossRefGoogle Scholar
Ten Cate, A., Derksen, J.J., Portela, L.M. & Van Den Akker, H.E.A. 2004 Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.10.1017/S0022112004001326CrossRefGoogle Scholar
Tenneti, S. & Subramaniam, S. 2014 Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199230.10.1146/annurev-fluid-010313-141344CrossRefGoogle Scholar
Voth, G.A. 2015 Disks aligned in a turbulent channel. J. Fluid Mech. 772, 14.10.1017/jfm.2015.144CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.10.1146/annurev-fluid-010816-060135CrossRefGoogle Scholar
Wang, L.-P., Peng, C., Guo, Z. & Yu, Z. 2016 Lattice Boltzmann simulation of particle-laden turbulent channel flow. Comput. Fluids 124, 226236.10.1016/j.compfluid.2015.07.008CrossRefGoogle Scholar
Wen, B., Zhang, C., Tu, Y., Wang, C. & Fang, H. 2014 Galilean invariant fluid–solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161170.10.1016/j.jcp.2014.02.018CrossRefGoogle Scholar
Yousefi, A., Costa, P., Picano, F. & Brandt, L. 2023 On the role of inertia in channel flows of finite-size neutrally buoyant particles. J. Fluid Mech. 955, A30.10.1017/jfm.2022.1078CrossRefGoogle Scholar
Yu, Z., Lin, Z., Shao, X. & Wang, L.-P. 2017 Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96, 033102.10.1103/PhysRevE.96.033102CrossRefGoogle ScholarPubMed
Yu, Z., Zhu, C., Wang, Y. & Shao, X. 2019 Effects of finite-size neutrally buoyant particles on the turbulent channel flow at a Reynolds number of 395. Appl. Maths Mech. 40 (2), 293304.10.1007/s10483-019-2426-8CrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.10.1016/j.ijmultiphaseflow.2011.09.004CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F.-G. & McLaughlin, J.B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow. 27, 9711009.10.1016/S0301-9322(00)00064-1CrossRefGoogle Scholar
Zhao, F., George, W.K., van, W. & Berend, G.M. 2015 a Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and stokes number. Phys. Fluids 27 (8), 083301.10.1063/1.4927277CrossRefGoogle Scholar
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2015 b Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115 (24), 244501.10.1103/PhysRevLett.115.244501CrossRefGoogle ScholarPubMed
Zhao, L., Marchioli, C. & Andersson, H.I. 2014 Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26 (6), 063302.10.1063/1.4881942CrossRefGoogle Scholar
Zhao, W. & Yong, W.-A. 2017 Single-node second-order boundary schemes for the lattice Boltzmann method. J. Comput. Phys. 329 (6), 115.10.1016/j.jcp.2016.10.049CrossRefGoogle Scholar
Zhu, C., Yu, Z., Pan, D. & Shao, X. 2020 Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. J. Fluid Mech. 891, A6.10.1017/jfm.2020.159CrossRefGoogle Scholar
Zhu, C., Yu, Z. & Shao, X. 2018 Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Phys. Fluids 30 (11), 115103.10.1063/1.5051592CrossRefGoogle Scholar