Cross-shelf transport in the inner continental shelf is governed by wind, wave and tidal interactions, but the role of Langmuir circulation (LC), induced by wave–current interaction and modulated by tides, has remained under-studied in this setting. We develop a Reynolds-averaged Navier–Stokes (RANS) model incorporating the Craik–Leibovich vortex force to resolve LC, coupled with a mass-conserving undertow and oscillating along-shelf tidal currents, and compare results against field data from the Martha’s Vineyard Coastal Observatory (MVCO). Under strong wave forcing (significant wave height
$H_{\textit{sig}} = 2.12\,\mathrm{m}$ and significant wave period
$T_w = 5.8\,\mathrm{s}$), LC persists throughout the tidal cycle, reducing vertical shear in the tidally averaged cross-shelf velocity profile compared with simulations excluding LC. During peak tidal velocity (reaching
$25\,\mathrm{cm\,s^{-1}}$ with period of
$ 12.42\,\mathrm{h}$), LC is temporarily suppressed but reforms rapidly as tidal energy declines, sustaining high vertical mixing. Conversely, under weak wave forcing (
$H_{\textit{sig}} = 0.837\,\mathrm{m}$,
$T_w = 4.3\,\mathrm{s}$), tidal currents persistently suppress LC, resulting in a cross-shelf undertow profile with greater vertical shear compared with strong-wave conditions. Model–observation comparisons show that only simulations including both the Craik–Leibovich vortex force and tidal forcing reproduce the observed undertow structure at MVCO. These results demonstrate that accurate prediction of cross-shelf transport at tidal and subtidal time scales requires resolving both the generation and disruption of LC by tides.