Hostname: page-component-857557d7f7-9f75d Total loading time: 0 Render date: 2025-11-26T09:09:43.803Z Has data issue: false hasContentIssue false

Asymptotic flow states in turbulent viscoelastic Taylor–Couette flow: transition between states and commensurate scale interaction

Published online by Cambridge University Press:  26 November 2025

Fenghui Lin
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Nan-Sheng Liu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Zhiye Zhao
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Xi-Yun Lu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Bamin Khomami*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
*
Corresponding authors: Nan-Sheng Liu, lns@ustc.edu.cn; Xi-Yun Lu, xlu@ustc.edu.cn; Bamin Khomami, bkhomami@utk.edu
Corresponding authors: Nan-Sheng Liu, lns@ustc.edu.cn; Xi-Yun Lu, xlu@ustc.edu.cn; Bamin Khomami, bkhomami@utk.edu
Corresponding authors: Nan-Sheng Liu, lns@ustc.edu.cn; Xi-Yun Lu, xlu@ustc.edu.cn; Bamin Khomami, bkhomami@utk.edu

Abstract

Asymptotic flow states with limiting drag modification are explored via direct numerical simulations in a moderate-curvature viscoelastic Taylor–Couette flow of the FENE-P fluid. We show that asymptotic drag modification (ADM) states are achieved at different solvent-to-total viscosity ratios ($\beta$) by gradually increasing the Weissenberg number from 10 to 150. As $\beta$ decreases from 0.99 to 0.90, for the first time, a continuous transition pathway is realised from the maximum drag reduction to the maximum drag enhancement, revealing a complete phase diagram of the ADM states. This transition originates from the competition between Reynolds stress reduction and polymer stress development, namely, a mechanistic change in angular momentum transport. Reduced $\beta$ has been found to effectively enhance elastic instability, suppressing large-scale Taylor vortices while promoting the formation of small-scale elastic Görtler vortices. The enhancement and in turn dominance of small-scale structures result in stronger incoherent transport, facilitating efficient mixing and substantial polymer stress development that ultimately drives the AMD state transition. Further analysis of the scale-decomposed transport equation of turbulent kinetic energy reveals an inverse energy cascade in the gap centre, which is attributed to the polymer-induced energy redistribution: polymers extract more energy from large scales than they can dissipate, with the excess energy redirected to smaller scales. However, the energy accumulating at smaller scales cannot be dissipated immediately and is consequently transferred back to larger scales via nonlinear interactions, thereby unravelling a novel polymer-mediated cycle for the reverse energy cascade. Overall, this study unravels the challenging puzzle of the existence of distinct dynamically connected ADM states and paves the way for coordinated experimental, simulation and theoretical studies of transition pathways to desired ADM states.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al-Mubaiyedh, U.A., Sureshkumar, R. & Khomami, B. 2000 Linear stability of viscoelastic Taylor–Couette flow: influence of fluid rheology and energetics. J. Rheol. 44, 11211138.10.1122/1.1289279CrossRefGoogle Scholar
Alves, M.A., Oliveira, P.J. & Pinho, F.T. 2021 Numerical methods for viscoelastic fluid flows. Annu. Rev. Fluid Mech. 53, 509541.10.1146/annurev-fluid-010719-060107CrossRefGoogle Scholar
Andereck, C.D., Liu, S.S. & Swinney, H.L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.10.1017/S0022112086002513CrossRefGoogle Scholar
Bai, Y., Latrache, N., Kelai, F., Crumeyrolle, O. & Mutabazi, I. 2023 Viscoelastic instabilities of Taylor–Couette flows with different rotation regimes. Philos. Trans. R. Soc. A 381, 20220133.10.1098/rsta.2022.0133CrossRefGoogle ScholarPubMed
Barbosa, K.C.O., Cussuol, J.D., Soares, E.J., Andrade, R.M. & Khalil, M.C. 2022 Polymer drag reduction below and above the overlap concentration. J. Non-Newton. Fluid Mech. 310, 104942.10.1016/j.jnnfm.2022.104942CrossRefGoogle Scholar
Barcilon, A. & Brindley, J. 1984 Organized structures in turbulent Taylor–Couette flow. J. Fluid Mech. 143, 429449.10.1017/S0022112084001427CrossRefGoogle Scholar
Beneitez, M., Mrini, S. & Kerswell, R.R. 2025 Linear instability in planar viscoelastic Taylor–Couette flow with and without explicit polymer diffusion. J. Non-Newton. Fluid Mech. 345, 105459.10.1016/j.jnnfm.2025.105459CrossRefGoogle Scholar
Beneitez, M., Page, J., Dubief, Y. & Kerswell, R.R. 2024 a Multistability of elasto-inertial two-dimensional channel flow. J. Fluid Mech. 981, A30.10.1017/jfm.2024.50CrossRefGoogle Scholar
Beneitez, M., Page, J., Dubief, Y. & Kerswell, R.R. 2024 b Transition route to elastic and elasto-inertial turbulence in polymer channel flows. Phys. Rev. Fluids 9, 123302.10.1103/PhysRevFluids.9.123302CrossRefGoogle Scholar
Beneitez, M., Page, J. & Kerswell, R.R. 2023 Polymer diffusive instability leading to elastic turbulence in plane Couette flow. Phys. Rev. Fluids 8, L101901.10.1103/PhysRevFluids.8.L101901CrossRefGoogle Scholar
Bilson, M. & Bremhorst, K. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 579, 227270.10.1017/S0022112007004971CrossRefGoogle Scholar
Boulafentis, T., Lacassagne, T., Cagney, N. & Balabani, S. 2023 Experimental insights into elasto-inertial transitions in Taylor–Couette flows. Phil. Trans. R. Soc. A 381, 20220131.10.1098/rsta.2022.0131CrossRefGoogle ScholarPubMed
Boulafentis, T., Lacassagne, T., Cagney, N. & Balabani, S. 2024 Coherent structures of elastoinertial instabilities in Taylor–Couette flows. J. Fluid Mech. 986, A27.10.1017/jfm.2024.163CrossRefGoogle Scholar
Brauckmann, H.J., Salewski, M. & Eckhardt, B. 2016 Momentum transport in Taylor–Couette flow with vanishing curvature. J. Fluid Mech. 790, 419452.10.1017/jfm.2015.737CrossRefGoogle Scholar
Cagney, N., Lacassagne, T. & Balabani, S. 2020 Taylor–Couette flow of polymer solutions with shear-thinning and viscoelastic rheology. J. Fluid Mech. 905, A28.10.1017/jfm.2020.701CrossRefGoogle Scholar
Choueiri, G.H., Lopez, J.M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120, 124501.10.1103/PhysRevLett.120.124501CrossRefGoogle ScholarPubMed
Dallas, V., Vassilicos, J.C. & Hewitt, G.F. 2010 Strong polymer-turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E 82, 066303.10.1103/PhysRevE.82.066303CrossRefGoogle ScholarPubMed
Datta, S.S., et al. 2022 Perspectives on viscoelastic flow instabilities and elastic turbulence. Phys. Rev. Fluids 7, 080701.10.1103/PhysRevFluids.7.080701CrossRefGoogle Scholar
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.10.1017/S0022112007007367CrossRefGoogle Scholar
Dubief, Y., Page, J., Kerswell, R.R., Terrapon, V.E. & Steinberg, V. 2022 First coherent structure in elasto-inertial turbulence. Phys. Rev. Fluids 7, 073301.10.1103/PhysRevFluids.7.073301CrossRefGoogle Scholar
Dubief, Y., Terrapon, V.E. & Hof, B. 2023 Elasto-inertial turbulence. Annu. Rev. Fluid Mech. 55, 675705.10.1146/annurev-fluid-032822-025933CrossRefGoogle Scholar
Dubief, Y., Terrapon, V.E. & Soria, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids 25, 110817.10.1063/1.4820142CrossRefGoogle ScholarPubMed
Dubief, Y., Terrapon, V.E., White, C.M., Shaqfeh, E.S.G., Moin, P. & Lele, S.K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74, 311329.10.1007/s10494-005-9002-6CrossRefGoogle Scholar
Dutcher, C.S. & Muller, S.J. 2009 Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor–Couette flows. J. Fluid Mech. 641, 85113.10.1017/S0022112009991431CrossRefGoogle Scholar
Dutcher, C.S. & Muller, S.J. 2013 Effects of moderate elasticity on the stability of co- and counter-rotating Taylor–Couette flows. J. Rheol. 57, 791812.10.1122/1.4798549CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.10.1017/S0022112007005629CrossRefGoogle Scholar
Ghanbari, R. & Khomami, B. 2014 The onset of purely elastic and thermo-elastic instabilities in Taylor–Couette flow: influence of gap ratio and fluid thermal sensitivity. J. Non-Newton. Fluid Mech. 208–209, 108117.10.1016/j.jnnfm.2014.04.004CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 1996 Couette–Taylor flow in a dilute polymer solution. Phys. Rev. Lett. 77, 14801483.10.1103/PhysRevLett.77.1480CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 1997 Solitary vortex pairs in viscoelastic Couette flow. Phys. Rev. Lett. 78, 14601463.10.1103/PhysRevLett.78.1460CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.10.1146/annurev-fluid-122414-034353CrossRefGoogle Scholar
Gupta, A. & Vincenzi, D. 2019 Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence. J. Fluid Mech. 870, 405418.10.1017/jfm.2019.224CrossRefGoogle Scholar
Horimoto, Y. & Okuyama, H. 2025 Angular momentum transport in Taylor–Couette turbulence of dilute surfactant solution. Appl. Therm. Eng. 262, 125238.10.1016/j.applthermaleng.2024.125238CrossRefGoogle Scholar
Ibarra, A.M. & Park, J.S. 2023 Transition to turbulence in viscoelastic channel flow of dilute polymer solutions. J. Fluid Mech. 976, A28.10.1017/jfm.2023.930CrossRefGoogle Scholar
Kawata, T. & Alfredsson, P.H. 2018 Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence. Phys. Rev. Lett. 120, 244501.10.1103/PhysRevLett.120.244501CrossRefGoogle ScholarPubMed
Kawata, T. & Alfredsson, P.H. 2019 Scale interactions in turbulent rotating planar Couette flow: insight through the Reynolds stress transport. J. Fluid Mech. 879, 255295.10.1017/jfm.2019.668CrossRefGoogle Scholar
Kawata, T. & Tsukahara, T. 2021 Scale interactions in turbulent plane Couette flows in minimal domains. J. Fluid Mech. 911, A55.10.1017/jfm.2020.1063CrossRefGoogle Scholar
Khalid, M., Shankar, V. & Subramanian, G. 2021 Continuous pathway between the elasto-inertial and elastic turbulent states in viscoelastic channel flow. Phys. Rev. Lett. 127, 134502.10.1103/PhysRevLett.127.134502CrossRefGoogle ScholarPubMed
Kim, K., Adrian, R.J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100, 134504.10.1103/PhysRevLett.100.134504CrossRefGoogle ScholarPubMed
Kim, K., Li, C.F., Sureshkumar, R., Balachandar, S. & Adrian, R.J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.10.1017/S0022112007006611CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.10.1016/0021-9991(85)90148-2CrossRefGoogle Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241282.10.1006/jcph.2000.6459CrossRefGoogle Scholar
Lacassagne, T., Cagney, N. & Balabani, S. 2021 Shear-thinning mediation of elasto-inertial Taylor–Couette flow. J. Fluid Mech. 915, A91.10.1017/jfm.2021.104CrossRefGoogle Scholar
Lacassagne, T., Cagney, N., Gillissen, J.J.J. & Balabani, S. 2020 Vortex merging and splitting: a route to elastoinertial turbulence in Taylor–Couette flow. Phys. Rev. Fluids 5, 113303.10.1103/PhysRevFluids.5.113303CrossRefGoogle Scholar
Larson, R.G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31, 213263.10.1007/BF00366504CrossRefGoogle Scholar
Larson, R.G., Shaqfeh, E.S.G. & Muller, S.J. 1990 A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218, 573600.10.1017/S0022112090001124CrossRefGoogle Scholar
Lathrop, D.P., Fineberg, J. & Swinney, H.L. 1992 a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.10.1103/PhysRevA.46.6390CrossRefGoogle ScholarPubMed
Lathrop, D.P., Fineberg, J. & Swinney, H.L. 1992 b Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett. 68, 15151518.10.1103/PhysRevLett.68.1515CrossRefGoogle ScholarPubMed
Latrache, N., Kelai, F., Bai, Y., Crumeyrolle, O. & Mutabazi, I. 2025 Quantitative characterization of the ribbons and elastic vortices in viscoelastic Taylor–Couette flow with Boger fluids. J. Non-Newton. Fluid Mech. 343, 105457.10.1016/j.jnnfm.2025.105457CrossRefGoogle Scholar
Latrache, N. & Mutabazi, I. 2021 Transition to turbulence via flame patterns in viscoelastic Taylor–Couette flow. Eur. Phys. E 44, 115.Google ScholarPubMed
Lee, S.H.K., Sengupta, S. & Wei, T. 1995 Effect of polymer additives on Görtler vortices in Taylor–Couette flow. J. Fluid Mech. 282, 115129.10.1017/S002211209500005XCrossRefGoogle Scholar
Lewis, G.S. & Swinney, H.L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.10.1103/PhysRevE.59.5457CrossRefGoogle ScholarPubMed
Li, C.F., Sureshkumar, R. & Khomami, B. 2006 Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newton. Fluid Mech. 140, 2340.10.1016/j.jnnfm.2005.12.012CrossRefGoogle Scholar
Li, C.F., Sureshkumar, R. & Khomami, B. 2015 Simple framework for understanding the universality of the maximum drag reduction asymptote in turbulent flow of polymer solutions. Phys. Rev. E 92, 043014.10.1103/PhysRevE.92.043014CrossRefGoogle ScholarPubMed
Lin, F.H., Song, J.X., Liao, Z.M., Liu, N.S., Lu, X.Y. & Khomami, B. 2025 Asymptotic drag reduction states in turbulent Taylor vortex flow of dilute polymeric solutions: interplay between large-scale structures and polymer chains dynamics. J. Fluid Mech. 1009, A24.10.1017/jfm.2025.186CrossRefGoogle Scholar
Lin, F.H., Song, J.X., Liu, N.S., Liu, L.Q., Lu, X.Y. & Khomami, B. 2024 a Keplerian turbulence in Taylor–Couette flow of dilute polymeric solutions. J. Fluid Mech. 1000, R3.10.1017/jfm.2024.1048CrossRefGoogle Scholar
Lin, F.H., Song, J.X., Liu, N.S., Wan, Z.H., Lu, X.-Y. & Khomami, B. 2024 b Maximum drag enhancement asymptote in turbulent Taylor–Couette flow of dilute polymeric solutions. J. Non-Newton. Fluid Mech. 323, 105172.10.1016/j.jnnfm.2023.105172CrossRefGoogle Scholar
Lin, F.H., Wan, Z.H., Zhu, Y.B., Liu, N.S., Lu, X.Y. & Khomami, B. 2022 High-fidelity robust and efficient finite difference algorithm for simulation of polymer-induced turbulence in cylindrical coordinates. J. Non-Newton. Fluid Mech. 307, 104875.10.1016/j.jnnfm.2022.104875CrossRefGoogle Scholar
Liu, N.S. & Khomami, B. 2013 Polymer-induced drag enhancement in turbulent Taylor–Couette flows: direct numerical simulations and mechanistic insight. Phys. Rev. Lett. 111, 114501.10.1103/PhysRevLett.111.114501CrossRefGoogle ScholarPubMed
Lopez, J.M. 2022 Vortex merging and splitting events in viscoelastic Taylor–Couette flow. J. Fluid Mech. 946, A27.10.1017/jfm.2022.579CrossRefGoogle Scholar
Lopez, J.M., Choueiri, G.H. & Hof, B. 2019 Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit. J. Fluid Mech. 874, 699719.10.1017/jfm.2019.486CrossRefGoogle Scholar
Lumley, J.L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367384.10.1146/annurev.fl.01.010169.002055CrossRefGoogle Scholar
Martínez-Arias, B., Peixinho, J., Crumeyrolle, O. & Mutabazi, I. 2014 Effect of the number of vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech. 748, 756767.10.1017/jfm.2014.213CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.10.1017/jfm.2012.511CrossRefGoogle Scholar
McKinley, G.H., Pakdel, P. & Öztekin, A. 1996 Rheological and geometric scaling of purely elastic flow instabilities. J. Non-Newton. Fluid Mech. 67, 1947.10.1016/S0377-0257(96)01453-XCrossRefGoogle Scholar
Moazzen, M., Lacassagne, T., Thomy, V. & Bahrani, S.A. 2023 Friction dynamics of elasto-inertial turbulence in Taylor–Couette flow of viscoelastic fluids. Phil. Trans. R. Soc. A 381, 20220300.10.1098/rsta.2022.0300CrossRefGoogle ScholarPubMed
More, R.V., Patterson, R., Pashkovski, E. & McKinley, G.H. 2024 Elasto-inertial instability in torsional flows of shear-thinning viscoelastic fluids. J. Fluid Mech. 985, A37.10.1017/jfm.2024.254CrossRefGoogle Scholar
Ostilla-Mónico, R., Huisman, S.G., Jannink, T.J.G., Van Gils, D.P.M., Verzicco, R., Grossmann, S., Sun, C. & Lohse, D. 2014 a Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech. 747, 129.10.1017/jfm.2014.134CrossRefGoogle Scholar
Ostilla-Mónico, R., Lohse, D. & Verzicco, R. 2016 Effect of roll number on the statistics of turbulent Taylor–Couette flow. Phys. Rev. Fluids 1, 054402.10.1103/PhysRevFluids.1.054402CrossRefGoogle Scholar
Ostilla-Mónico, R., Stevens, R.J.A.M., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.10.1017/jfm.2012.596CrossRefGoogle Scholar
Ostilla-Mónico, R., Van Der Poel, E.P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 b Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26 (1).10.1063/1.4863312CrossRefGoogle Scholar
Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2015 Effects of the computational domain size on direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27, 025110.10.1063/1.4913231CrossRefGoogle Scholar
Pakdel, P. & McKinley, G.H. 1996 Elastic instability and curved streamlines. Phys. Rev. Lett. 77, 24592462.10.1103/PhysRevLett.77.2459CrossRefGoogle ScholarPubMed
Procaccia, I., L’vov, V.S. & Benzi, R. 2008 Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225247.10.1103/RevModPhys.80.225CrossRefGoogle Scholar
Purnode, B. & Crochet, M.J. 1998 Polymer solution characterization with the FENE-P model. J. Non-Newton. Fluid Mech. 77, 120.10.1016/S0377-0257(97)00096-7CrossRefGoogle Scholar
Rai, M.M. & Moin, P. 1991 Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96 (1), 1553.Google Scholar
Rajappan, A. & McKinley, G.H. 2020 Cooperative drag reduction in turbulent flows using polymer additives and superhydrophobic walls. Phys. Rev. Fluids 5, 114601.10.1103/PhysRevFluids.5.114601CrossRefGoogle Scholar
Saeed, Z. & Elbing, B.R. 2023 Polymer drag reduction: a review through the lens of coherent structures in wall-bounded turbulent flows. Phys. Fluids 35 (8), 081304.10.1063/5.0162648CrossRefGoogle Scholar
Saikrishnan, N., De Angelis, E., Longmire, E.K., Marusic, I., Casciola, C.M. & Piva, R. 2012 Reynolds number effects on scale energy balance in wall turbulence. Phys. Fluids 24, 015101.10.1063/1.3673609CrossRefGoogle Scholar
Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A.N., Wagner, C. & Hof, B. 2013 Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110, 1055710562.10.1073/pnas.1219666110CrossRefGoogle ScholarPubMed
Schäfer, C., Morozov, A. & Wagner, C. 2018 Geometric scaling of elastic instabilities in the Taylor–Couette geometry: a theoretical, experimental and numerical study. J. Non-Newton. Fluid Mech. 259, 7890.10.1016/j.jnnfm.2018.06.002CrossRefGoogle Scholar
Shaqfeh, E.S.G. & Khomami, B. 2021 The Oldroyd-B fluid in elastic instabilities, turbulence and particle suspensions. J. Non-Newton. Fluid Mech. 298, 104672.10.1016/j.jnnfm.2021.104672CrossRefGoogle Scholar
Sid, S., Terrapon, V.E. & Dubief, Y. 2018 Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction. Phys. Rev. Fluids 3, 011301.10.1103/PhysRevFluids.3.011301CrossRefGoogle Scholar
Somasi, M. & Khomami, B. 2000 Linear stability and dynamics of viscoelastic flows using time-dependent stochastic simulation techniques. J. Non-Newton. Fluid Mech. 93, 339362.10.1016/S0377-0257(00)00115-4CrossRefGoogle Scholar
Song, J.X., Lin, F.H., Liu, N.S., Lu, X.Y. & Khomami, B. 2021 Direct numerical simulation of inertio-elastic turbulent Taylor–Couette flow. J. Fluid Mech. 926, A37.10.1017/jfm.2021.757CrossRefGoogle Scholar
Song, J.X., Teng, H., Liu, N.S., Ding, H., Lu, X.Y. & Khomami, B. 2019 The correspondence between drag enhancement and vortical structures in turbulent Taylor–Couette flows with polymer additives: a study of curvature dependence. J. Fluid Mech. 881, 602616.10.1017/jfm.2019.760CrossRefGoogle Scholar
Song, J.X., Zhu, Y.B., Lin, F.H., Liu, N.S. & Khomami, B. 2023 Turbulent Taylor–Couette flow of dilute polymeric solutions: a 10-year retrospective. Phil. Trans. R. Soc. A 381, 20220132.10.1098/rsta.2022.0132CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.10.1017/S0022112009992461CrossRefGoogle Scholar
Surya Phani Tej, P.S.D., Kumar Mohanty, P. & Shankar, V. 2025 Hoop stress and polymer diffusive instabilities in viscoelastic Taylor–Couette flow. Proc. R. Soc. A 481, 20250455.10.1098/rspa.2025.0455CrossRefGoogle Scholar
Tabor, M. & de Gennes, P.G. 1986 A cascade theory of drag reduction. Eur. Phys. Lett. 2, 519.10.1209/0295-5075/2/7/005CrossRefGoogle Scholar
Talwar, K.K., Ganpule, H.K. & Khomami, B. 1994 A note on selection of spaces in computation of viscoelastic flows using the hp-finite element method. J. Non-Newton. Fluid Mech. 52, 293307.10.1016/0377-0257(94)85026-7CrossRefGoogle Scholar
Teng, H., Liu, N.S., Lu, X.Y. & Khomami, B. 2018 Turbulent drag reduction in plane Couette flow with polymer additives: a direct numerical simulation study. J. Fluid Mech. 846, 482507.10.1017/jfm.2018.242CrossRefGoogle Scholar
Terrapon, V.E., Dubief, Y. & Soria, J. 2015 On the role of pressure in elasto-inertial turbulence. J. Turbul. 16, 2643.10.1080/14685248.2014.952430CrossRefGoogle Scholar
Thomas, D.G., Sureshkumar, R. & Khomami, B. 2006 Pattern formation in Taylor–Couette flow of dilute polymer solutions: dynamical simulations and mechanism. Phys. Rev. Lett. 97, 054501.10.1103/PhysRevLett.97.054501CrossRefGoogle ScholarPubMed
Toms, B.A. 1949 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: Proc. 1st International Congress on Rheology, vol. 2, pp. 135141.Google Scholar
Tsukahara, T., Ishigami, T., Yu, B. & Kawaguchi, Y. 2011 DNS study on viscoelastic effect in drag-reduced turbulent channel flow. J. Turbul. 12, N13.10.1080/14685248.2010.544657CrossRefGoogle Scholar
Vaithianathan, T., Robert, A., Brasseur, J.G. & Collins, L.R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newton. Fluid Mech. 140, 322.10.1016/j.jnnfm.2006.03.018CrossRefGoogle Scholar
Valente, P.C., Da Silva, C.B. & Pinho, F.T. 2014 The effect of viscoelasticity on the turbulent kinetic energy cascade. J. Fluid Mech. 760, 3962.10.1017/jfm.2014.585CrossRefGoogle Scholar
van der Poel, E.P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.10.1016/j.compfluid.2015.04.007CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.10.1006/jcph.1996.0033CrossRefGoogle Scholar
Virk, P.S., Merrill, E.W., Mickley, H.S., Smith, K.A. & Mollo-Christensen, E.L. 1967 The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 30, 305328.10.1017/S0022112067001442CrossRefGoogle Scholar
Virk, P.S., Mickley, Harold S. & Smith, K.A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech. 37, 488493.10.1115/1.3408532CrossRefGoogle Scholar
Wang, S., Zhang, W., Wang, X., Li, X., Zhang, H. & Li, F. 2023 Maximum drag reduction state of viscoelastic turbulent channel flow: marginal inertial turbulence or elasto-inertial turbulence. J. Fluid Mech. 960, A12.10.1017/jfm.2023.151CrossRefGoogle Scholar
Warholic, M.D., Massah, H. & Hanratty, T.J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461472.10.1007/s003480050371CrossRefGoogle Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.10.1146/annurev.fluid.40.111406.102156CrossRefGoogle Scholar
Xi, L. 2019 Turbulent drag reduction by polymer additives: fundamentals and recent advances. Phys. Fluids 31, 121302.10.1063/1.5129619CrossRefGoogle Scholar
Xi, H.-D., Bodenschatz, E. & Xu, H. 2013 Elastic energy flux by flexible polymers in fluid turbulence. Phys. Rev. Lett. 111, 024501.10.1103/PhysRevLett.111.024501CrossRefGoogle ScholarPubMed
Xi, L. & Graham, M.D. 2010 Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.10.1103/PhysRevLett.104.218301CrossRefGoogle ScholarPubMed
Xi, L. & Graham, M.D. 2012 Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 108, 028301.10.1103/PhysRevLett.108.028301CrossRefGoogle ScholarPubMed
Xu, F., Liu, X.-S., Li, X.-M. & Xia, K.-Q. 2025 Restoration of axisymmetric flow structure in turbulent thermal convection by polymer additives. Phys. Rev. Lett. 134, 084001.10.1103/PhysRevLett.134.084001CrossRefGoogle ScholarPubMed
Yamani, S., Keshavarz, B., Raj, Y., Zaki, T.A., McKinley, G.H. & Bischofberger, I. 2021 Spectral universality of elastoinertial turbulence. Phys. Rev. Lett. 127, 074501.10.1103/PhysRevLett.127.074501CrossRefGoogle ScholarPubMed
Yamani, S. & McKinley, G.H. 2023 Master curves for FENE-P fluids in steady shear flow. J. Non-Newton. Fluid Mech. 313, 104944.10.1016/j.jnnfm.2022.104944CrossRefGoogle Scholar
Zhang, Y.-B., Bodenschatz, E., Xu, H. & Xi, H.-D. 2021 a Experimental observation of the elastic range scaling in turbulent flow with polymer additives. Sci. Adv. 7, eabd3525.10.1126/sciadv.abd3525CrossRefGoogle ScholarPubMed
Zhang, H., Cheng, H., Wang, S., Zhang, W., Li, X. & Li, F. 2024 The minimal flow unit and origin of two-dimensional elasto-inertial turbulence. J. Fluid Mech. 999, A82.10.1017/jfm.2024.977CrossRefGoogle Scholar
Zhang, Y.-B., Fan, Y., Su, J., Xi, H.-D. & Sun, C. 2025 Global drag reduction and local flow statistics in Taylor–Couette turbulence with dilute polymer additives. J. Fluid Mech. 1002, A33.10.1017/jfm.2024.1168CrossRefGoogle Scholar
Zhang, W.-H., Shao, Q.-Qn, Li, Y.-K., Ma, Y., Zhang, H.-N. & Li, F.-C. 2021 b On the mechanisms of sheet-like extension structures formation and self-sustaining process in elasto-inertial turbulence. Phys. Fluids 33 (8), 085107.10.1063/5.0057181CrossRefGoogle Scholar
Zhang, W.H., Zhang, H.N., Wang, Z.M., Li, Y.K., Yu, B. & Li, F.C. 2022 Repicturing viscoelastic drag-reducing turbulence by introducing dynamics of elasto-inertial turbulence. J. Fluid Mech. 940, A31.10.1017/jfm.2022.255CrossRefGoogle Scholar
Zhou, C., Dou, H.-S., Niu, L. & Xu, W. 2025 Inverse energy cascade in turbulent Taylor–Couette flows. Phys. Fluids 37, 014110.10.1063/5.0250908CrossRefGoogle Scholar
Zhu, X., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2016 Direct numerical simulation of Taylor–Couette flow with grooved walls: torque scaling and flow structure. J. Fluid Mech. 794, 746774.10.1017/jfm.2016.179CrossRefGoogle Scholar
Zhu, Y.B., Song, J.X., Lin, F.H., Liu, N.S., Lu, X.Y. & Khomami, B. 2022 Relaminarization of spanwise-rotating viscoelastic plane Couette flow via a transition sequence from a drag-reduced inertial to a drag-enhanced elasto-inertial turbulent flow. J. Fluid Mech. 931, R7.10.1017/jfm.2021.1009CrossRefGoogle Scholar
Zhu, Y.B., Wan, Z.H., Lin, F.H., Liu, N.S., Lu, X.Y. & Khomami, B. 2023 Maximum drag enhancement asymptote in spanwise-rotating viscoelastic plane Couette flow of dilute polymeric solutions. J. Fluid Mech. 958, A15.10.1017/jfm.2023.75CrossRefGoogle Scholar
Zhu, L. & Xi, L. 2020 Inertia-driven and elastoinertial viscoelastic turbulent channel flow simulated with a hybrid pseudo-spectral/finite-difference numerical scheme. J. Non-Newton. Fluid Mech. 286, 104410.10.1016/j.jnnfm.2020.104410CrossRefGoogle Scholar
Zhu, L. & Xi, L. 2021 Nonasymptotic elastoinertial turbulence for asymptotic drag reduction. Phys. Rev. Fluids 6, 014601.10.1103/PhysRevFluids.6.014601CrossRefGoogle Scholar