By $\text{d(X,Y)}$ we denote the (multiplicative) Banach–Mazur distance between two normed spaces $X$ and $Y$. Let $X$ be an $n$-dimensional normed space with $\text{d(X,}\,l_{\infty }^{n}\text{)}\,\le \,\text{2}$, where $l_{\infty }^{n}$ stands for ${{\mathbb{R}}^{n}}$ endowed with the norm $\parallel ({{x}_{1}},\,.\,.\,.\,,\,{{x}_{n}}){{\parallel }_{\infty }}\,:=\,\max \{|{{x}_{1}}|,\,.\,.\,.\,,\,|{{x}_{n}}|\}$. Then every metric space $(S,\,\rho )$ of cardinality $n+1$ with norm $\rho $ satisfying the condition $\max D/\min D\,\le \,2/\,\text{d(}X,\,l_{\infty }^{n}\text{)}$ for $D\,:=\,\{\rho (a,\,b)\,:\,a,\,b\,\in \,S,\,a\,\ne \,b\}$ can be isometrically embedded into $X$.