We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.
We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general solutions is unbounded and that the complex limit set of each solution exists and is compact and connected.
We provide a complete classification of the singularities of cluster algebras of finite type with trivial coefficients. Alongside, we develop a constructive desingularization of these singularities via blowups in regular centers over fields of arbitrary characteristic. Furthermore, from the same perspective, we study a family of cluster algebras which are not of finite type and which arise from a star shaped quiver.
Let $ {\mathbb {C}}^{n+1}_o$ denote the germ of $ {\mathbb {C}}^{n+1}$ at the origin. Let $V$ be a hypersurface germ in $ {\mathbb {C}}^{n+1}_o$ and $W$ a deformation of $V$ over $ {\mathbb {C}}_{o}^{m}$. Under the hypothesis that $W$ is a Newton non-degenerate deformation, in this article we prove that $W$ is a $\mu$-constant deformation if and only if $W$ admits a simultaneous embedded resolution. This result gives a lot of information about $W$, for example, the topological triviality of the family $W$ and the fact that the natural morphism $(\operatorname {W( {\mathbb {C}}_{o})}_{m})_{{\rm red}}\rightarrow {\mathbb {C}}_{o}$ is flat, where $\operatorname {W( {\mathbb {C}}_{o})}_{m}$ is the relative space of $m$-jets. On the way to the proof of our main result, we give a complete answer to a question of Arnold on the monotonicity of Newton numbers in the case of convenient Newton polyhedra.
For
$G = \mathrm {GL}_2, \mathrm {SL}_2, \mathrm {PGL}_2$
we compute the intersection E-polynomials and the intersection Poincaré polynomials of the G-character variety of a compact Riemann surface C and of the moduli space of G-Higgs bundles on C of degree zero. We derive several results concerning the P=W conjectures for these singular moduli spaces.
We compactify and regularise the space of initial values of a planar map with a quartic invariant and use this construction to prove its integrability in the sense of algebraic entropy. The system has certain unusual properties, including a sequence of points of indeterminacy in
$\mathbb {P}^{1}\!\times \mathbb {P}^{1}$
. These indeterminacy points lie on a singular fibre of the mapping to a corresponding QRT system and provide the existence of a one-parameter family of special solutions.
Soient $S$ un schéma nœthérien et $f:X\rightarrow S$ un morphisme propre. D’après SGA 4 XIV, pour tout faisceau constructible $\mathscr{F}$ de $\mathbb{Z}/n\mathbb{Z}$-modules sur $X$, les faisceaux de $\mathbb{Z}/n\mathbb{Z}$-modules $\mathtt{R}^{i}f_{\star }\mathscr{F}$, obtenus par image directe (pour la topologie étale), sont également constructibles : il existe une stratification $\mathfrak{S}$ de $S$ telle que ces faisceaux soient localement constants constructibles sur les strates. À la suite de travaux de N. Katz et G. Laumon, ou L. Illusie, dans le cas particulier où $S$ est génériquement de caractéristique nulle ou bien les faisceaux $\mathscr{F}$ sont constants (de torsion inversible sur $S$), on étudie ici la dépendance de $\mathfrak{S}$ en $\mathscr{F}$. On montre qu’une condition naturelle de constructibilité et modération « uniforme » satisfaite par les faisceaux constants, introduite par O. Gabber, est stable par les foncteurs $\mathtt{R}^{i}f_{\star }$. Si $f$ n’est pas supposé propre, ce résultat subsiste sous réserve de modération à l’infini, relativement à $S$. On démontre aussi l’existence de bornes uniformes sur les nombres de Betti, qui s’appliquent notamment pour les fibres des faisceaux $\mathtt{R}^{i}f_{\star }\mathbb{F}_{\ell }$, où $\ell$ parcourt les nombres premiers inversibles sur $S$.
We investigate Cox rings of minimal resolutions of surface quotient singularities and provide two descriptions of these rings. The first one is the equation for the spectrum of a Cox ring, which is a hypersurface in an affine space. The second is the set of generators of the Cox ring viewed as a subring of the coordinate ring of a product of a torus and another surface quotient singularity. In addition, we obtain an explicit description of the minimal resolution as a divisor in a toric variety.
Given a finite subgroup G⊂GL(2,ℂ), it is known that the minimal resolution of singularity ℂ2/G is the moduli space Y=G-Hilb(ℂ2) of G-clusters ⊂ℂ2. The explicit description of Y can be obtained by calculating every possible distinguished basis for as vector spaces. These basis are the so-called G-graphs. In this paper we classify G-graphs for any small binary dihedral subgroup G in GL(2,ℂ), and in the context of the special McKay correspondence we use this classification to give a combinatorial description of special representations of G appearing in Y in terms of its maximal normal cyclic subgroup H ⊴ G.
The main goal of this paper is to deduce (from a recent resolution of singularities result of Gabber) the following fact: (effective) Chow motives with ℤ[1/p]-coefficients over a perfect field k of characteristic p generate the category DMeffgm[1/p] (of effective geometric Voevodsky’s motives with ℤ[1/p]-coefficients). It follows that DMeffgm[1/p] can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p] (weight structures were introduced in a preceding paper, where the existence of wChow for DMeffgmℚ was also proved). As shown in previous papers, this statement immediately yields the existence of a conservative weight complex functor DMeffgm[1/p]→Kb (Choweff [1/p]) (which induces an isomorphism on K0-groups), as well as the existence of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for any cohomology theory on DMeffgm[1/p] . We also mention a certain Chow t-structure for DMeff−[1/p] and relate it with unramified cohomology.
Let (X, O) be a germ of a normal surface singularity, π: → X be the minimal resolution of singularities and let A = (ai,j) be the n × n symmetrical intersection matrix of the exceptional set of In an old preprint Nash proves that the set of arcs on a surface singularity is a scheme , and defines a map from the set of irreducible components of to the set of exceptional components of the minimal resolution of singularities of (X,O). He proved that this map is injective and ask if it is surjective. In this paper we consider the canonical decomposition
• For any couple (Ei,Ej) of distinct exceptional components, we define Numerical Nash condition (NN(i,j)). We have that (NN(i,j)) implies In this paper we prove that (NN(i,j)) is always true for at least the half of couples (i,j).
• The condition (NN(i,j)) is true for all couples (i,j) with i ≠ j, characterizes a certain class of negative definite matrices, that we call Nash matrices. If A is a Nash matrix then the Nash map N is bijective. In particular our results depend only on A and not on the topological type of the exceptional set.
• We recover and improve considerably almost all results known on this topic and our proofs are new and elementary.
• We give infinitely many other classes of singularities where Nash Conjecture is true.
The proofs are based on my old work [8] and in Plenat [10].
For each non-negative integer n we define the nth Nash blowup of an algebraic variety, and call them all higher Nash blowups. When n=1, it coincides with the classical Nash blowup. We study higher Nash blowups of curves in detail and prove that any curve in characteristic zero can be desingularized by its nth Nash blowup with n large enough. Moreover, we completely determine for which n the nth Nash blowup of an analytically irreducible curve singularity in characteristic zero is normal, in terms of the associated numerical monoid.
In this paper we study ruled surfaces which appear as exceptional surface in a succession of blowing-ups. In particular we prove that the $e$-invariant of such a ruled exceptional surface $E$ is strictly positive whenever its intersection with the other exceptional surfaces does not contain a fiber (of $E$). This fact immediately enables us to resolve an open problem concerning an intersection configuration on such a ruled exceptional surface consisting of three nonintersecting sections. In the second part of the paper we apply the non-vanishing of $e$ to the study of the poles of the well-known topological, Hodge and motivic zeta functions.
Let $X$ be a minuscule Schubert variety. In this paper, we associate a quiver with $X$ and use the combinatorics of this quiver to describe all relative minimal models $\widehat{\pi}:{\widehat{X}}\to X$. We prove that all the morphisms $\widehat{\pi}$ are small and give a combinatorial criterion for $\widehat{X}$ to be smooth and thus a small resolution of $X$. We describe in this way all small resolutions of $X$. As another application of this description of relative minimal models, we obtain the following more intrinsic statement of the main result of Perrin, J. Algebra 294 (2005), 431–462. Let $\alpha\in A_1(X)$ be an effective 1-cycle class. Then the irreducible components of the scheme Hom$_{\alpha}(p^1,X)$ of morphisms from $\mathbb{P}^1$ to $X$ and of class $\alpha$ are indexed by the set: ${\mathfrak{ne}}(\alpha)=\{\beta\in A_1(\widehat{X}) \mid \beta$ is effective and $\widehat{\pi}_*\beta=\alpha\}$ which is independent of the choice of a relative minimal model $\widehat{X}$ of $X$.
In 2002, L. Nicolaescu and the fourth author formulated a very general conjecture which relates the geometric genus of a Gorenstein surface singularity with rational homology sphere link with the Seiberg--Witten invariant (or one of its candidates) of the link. Recently, the last three authors found some counterexamples using superisolated singularities. The theory of superisolated hypersurface singularities with rational homology sphere link is equivalent with the theory of rational cuspidal projective plane curves. In the case when the corresponding curve has only one singular point one knows no counterexample. In fact, in this case the above Seiberg--Witten conjecture led us to a very interesting and deep set of `compatibility properties' of these curves (generalising the Seiberg--Witten invariant conjecture, but sitting deeply in algebraic geometry) which seems to generalise some other famous conjectures and properties as well (for example, the Noether--Nagata or the log Bogomolov--Miyaoka--Yau inequalities). Namely, we provide a set of `compatibility conditions' which conjecturally is satisfied by a local embedded topological type of a germ of plane curve singularity and an integer $d$ if and only if the germ can be realized as the unique singular point of a rational unicuspidal projective plane curve of degree $d$. The conjectured compatibility properties have a weaker version too, valid for any rational cuspidal curve with more than one singular point. The goal of the present article is to formulate these conjectured properties, and to verify them in all the situations when the logarithmic Kodaira dimension of the complement of the corresponding plane curves is strictly less than 2.
The techniques and concepts we present are flags of regular schemes and their persistence under blow-up, the Gauss–Bruhat decomposition of the group of formal automorphisms of affine space, and coordinate-free initial ideals. All three are used to construct and study invariants for resolution of singularities.
The purpose of this paper is to show how the methods of motivic integration of Kontsevich, Denef–Loeser (Invent. Math. 135 (1999) 201–232 and Compositio Math. 131 (2002) 267–290) and Looijenga (Astérisque 276 (2002) 267–297) can be adapted to prove the McKay–Ruan correspondence, a generalization of the McKay–Reid correspondence to orbifolds that are not necessarily global quotients.
A previous conjecture is verified for any normal surface singularity which admits a good ${\mathbb C}^*$-action. This result connects the Seiberg–Witten invariant of the link (associated with a certain ‘canonical’ spin$^c$ structure) with the geometric genus of the singularity, provided that the link is a rational homology sphere.
As an application, a topological interpretation is found of the generalized Batyrev stringy invariant (in the sense of Veys) associated with such a singularity.
The result is partly based on the computation of the Reidemeister–Turaev sign-refined torsion and the Seiberg–Witten invariant (associated with any spin$^c$ structure) of a Seifert 3-manifold with negative orbifold Euler number and genus zero.
We study the local topological zeta function associated to a complex function that is holomorphic at the origin of $\mathbb{C}^2$ (respectively $\mathbb{C}^3$). We determine all possible poles less than −1/2 (respectively −1). On $\mathbb{C}^2$ our result is a generalization of the fact that the log canonical threshold is never in ]5/6,1[. Similar statements are true for the motivic zeta function.