We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
We give an explicit formula for the Frobenius number of triples associated with the Diophantine equation $x^2+y^2=z^3$, that is, the largest positive integer that can only be represented in p ways by combining the three integers of the solutions of $x^2+y^2=z^3$. For the equation $x^2+y^2=z^2$, the Frobenius number has already been given. Our approach can be extended to the general equation $x^2+y^2=z^r$ for $r>3$.
Given a permutation statistic $\operatorname {\mathrm {st}}$, define its inverse statistic $\operatorname {\mathrm {ist}}$ by . We give a general approach, based on the theory of symmetric functions, for finding the joint distribution of $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {ist}}_{2}$ whenever $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {st}}_{2}$ are descent statistics: permutation statistics that depend only on the descent composition. We apply this method to a number of descent statistics, including the descent number, the peak number, the left peak number, the number of up-down runs and the major index. Perhaps surprisingly, in many cases the polynomial giving the joint distribution of $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {ist}}_{2}$ can be expressed as a simple sum involving products of the polynomials giving the (individual) distributions of $\operatorname {\mathrm {st}}_{1}$ and $\operatorname {\mathrm {st}}_{2}$. Our work leads to a rederivation of Stanley’s generating function for doubly alternating permutations, as well as several conjectures concerning real-rootedness and $\gamma $-positivity.
The $\lambda $-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter’s friezes. Their number and properties are closely linked to the structure and the cardinality of the chosen set. Our main objective is an explicit formula giving the number of $\lambda $-quiddities of odd size, and a lower and upper bound for the number of $\lambda $-quiddities of even size, over the rings ${\mathbb {Z}}/2^{m}{\mathbb {Z}}$ ($m \geq 2$). We also give explicit formulae for the number of $\lambda $-quiddities of size n over ${\mathbb {Z}}/8{\mathbb {Z}}$.
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.
The protection number of a vertex $v$ in a tree is the length of the shortest path from $v$ to any leaf contained in the maximal subtree where $v$ is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree $1$, then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.
We conduct a systematic study of the Ehrhart theory of certain slices of rectangular prisms. Our polytopes are generalizations of the hypersimplex and are contained in the larger class of polypositroids introduced by Lam and Postnikov; moreover, they coincide with polymatroids satisfying the strong exchange property up to an affinity. We give a combinatorial formula for all the Ehrhart coefficients in terms of the number of weighted permutations satisfying certain compatibility properties. This result proves that all these polytopes are Ehrhart positive. Additionally, via an extension of a result by Early and Kim, we give a combinatorial interpretation for all the coefficients of the $h^*$-polynomial. All of our results provide a combinatorial understanding of the Hilbert functions and the h-vectors of all algebras of Veronese type, a problem that had remained elusive up to this point. A variety of applications are discussed, including expressions for the volumes of these slices of prisms as weighted combinations of Eulerian numbers; some extensions of Laplace’s result on the combinatorial interpretation of the volume of the hypersimplex; a multivariate generalization of the flag Eulerian numbers and refinements; and a short proof of the Ehrhart positivity of the independence polytope of all uniform matroids.
We propose generating functions, $\textrm {RGF}_p(x)$, for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain $\textrm {RGF}_p(x)$ by extracting the constant term of a rational function. We use $\textrm {RGF}_p(x)$ to give a system of generators for the quotient of the numerical semigroup $\langle a_1,a_2,a_3\rangle $ by p for a small positive integer p, and we characterise the generators of ${\langle A\rangle }/{p}$ for a general numerical semigroup A and any positive integer p.
A subset of positive integers F is a Schreier set if it is nonempty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $k\mathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(k\mathcal {S})^n$ be the collection of all sets in $k\mathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1\mathcal {S})^n|)_{n=1}^\infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(k\mathcal {S})^n|)_{n=1}^\infty $ satisfies a linear recurrence for every positive k.
Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions $\omega (q)$, $\nu (q)$, and $\psi ^{(3)}(q)$, introduced by Ramanujan and Watson.
The factorially normalized Bernoulli polynomials $b_n(x) = B_n(x)/n!$ are known to be characterized by $b_0(x) = 1$ and $b_n(x)$ for $n \gt 0$ is the anti-derivative of $b_{n-1}(x)$ subject to $\int _0^1 b_n(x) dx = 0$. We offer a related characterization: $b_1(x) = x - 1/2$ and $({-}1)^{n-1} b_n(x)$ for $n \gt 0$ is the $n$-fold circular convolution of $b_1(x)$ with itself. Equivalently, $1 - 2^n b_n(x)$ is the probability density at $x \in (0,1)$ of the fractional part of a sum of $n$ independent random variables, each with the beta$(1,2)$ probability density $2(1-x)$ at $x \in (0,1)$. This result has a novel combinatorial analog, the Bernoulli clock: mark the hours of a $2 n$ hour clock by a uniformly random permutation of the multiset $\{1,1, 2,2, \ldots, n,n\}$, meaning pick two different hours uniformly at random from the $2 n$ hours and mark them $1$, then pick two different hours uniformly at random from the remaining $2 n - 2$ hours and mark them $2$, and so on. Starting from hour $0 = 2n$, move clockwise to the first hour marked $1$, continue clockwise to the first hour marked $2$, and so on, continuing clockwise around the Bernoulli clock until the first of the two hours marked $n$ is encountered, at a random hour $I_n$ between $1$ and $2n$. We show that for each positive integer $n$, the event $( I_n = 1)$ has probability $(1 - 2^n b_n(0))/(2n)$, where $n! b_n(0) = B_n(0)$ is the $n$th Bernoulli number. For $ 1 \le k \le 2 n$, the difference $\delta _n(k)\,:\!=\, 1/(2n) -{\mathbb{P}}( I_n = k)$ is a polynomial function of $k$ with the surprising symmetry $\delta _n( 2 n + 1 - k) = ({-}1)^n \delta _n(k)$, which is a combinatorial analog of the well-known symmetry of Bernoulli polynomials $b_n(1-x) = ({-}1)^n b_n(x)$.
Recently, Hong and Li launched a systematic study of length-four pattern avoidance in inversion sequences, and in particular, they conjectured that the number of 0021-avoiding inversion sequences can be enumerated by the OEIS entry A218225. Meanwhile, Burstein suggested that the same sequence might also count three sets of pattern-restricted permutations. The objective of this paper is not only a confirmation of Hong and Li’s conjecture and Burstein’s first conjecture but also two more delicate generating function identities with the $\mathsf{ides}$ statistic concerned in the restricted permutation case and the $\mathsf{asc}$ statistic concerned in the restricted inversion sequence case, which yield a new equidistribution result.
We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$-web bases of the irreducible $ \mathfrak {S}_{2n} $-representation indexed by $ (n,n) $, which answers Rhoades’s question. Furthermore, we study enumerative properties of these permutations.
Remixed Eulerian numbers are a polynomial q-deformation of Postnikov’s mixed Eulerian numbers. They arose naturally in previous work by the authors concerning the permutahedral variety and subsume well-known families of polynomials such as q-binomial coefficients and Garsia–Remmel’s q-hit numbers. We study their combinatorics in more depth. As polynomials in q, they are shown to be symmetric and unimodal. By interpreting them as computing success probabilities in a simple probabilistic process we arrive at a combinatorial interpretation involving weighted trees. By decomposing the permutahedron into certain combinatorial cubes, we obtain a second combinatorial interpretation. At $q=1$, the former recovers Postnikov’s interpretation whereas the latter recovers Liu’s interpretation, both of which were obtained via methods different from ours.
We study some combinatorial properties of higher-dimensional partitions which generalize plane partitions. We present a natural bijection between d-dimensional partitions and d-dimensional arrays of nonnegative integers. This bijection has a number of important applications. We introduce a statistic on d-dimensional partitions, called the corner-hook volume, whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable formulas whose specializations give analogues of various formulas known for plane partitions. We also introduce higher-dimensional analogues of dual stable Grothendieck polynomials which are quasisymmetric functions and whose specializations enumerate higher-dimensional partitions of a given shape. Finally, we show probabilistic connections with a directed last passage percolation model in $\mathbb {Z}^d$.
We use the tropical geometry approach to compute absolute and relative enumerative invariants of complex surfaces which are $\mathbb {C} P^1$-bundles over an elliptic curve. We also show that the tropical multiplicity used to count curves can be refined by the standard Block–Göttsche refined multiplicity to give tropical refined invariants. We then give a concrete algorithm using floor diagrams to compute these invariants along with the associated interpretation as operators acting on some Fock space. The floor diagram algorithm allows one to prove the piecewise polynomiality of the relative invariants, and the quasi-modularity of their generating series.
If a sequence indexed by nonnegative integers satisfies a linear recurrence without constant terms, one can extend the indices of the sequence to negative integers using the recurrence. Recently, Cigler and Krattenthaler showed that the negative version of the number of bounded Dyck paths is the number of bounded alternating sequences. In this paper, we provide two methods to compute the negative versions of sequences related to moments of orthogonal polynomials. We give a combinatorial model for the negative version of the number of bounded Motzkin paths. We also prove two conjectures of Cigler and Krattenthaler on reciprocity between determinants.
We address Hodge integrals over the hyperelliptic locus. Recently Afandi computed, via localisation techniques, such one-descendant integrals and showed that they are Stirling numbers. We give another proof of the same statement by a very short argument, exploiting Chern classes of spin structures and relations arising from Topological Recursion in the sense of Eynard and Orantin.
These techniques seem also suitable to deal with three orthogonal generalisations: (1) the extension to the r-hyperelliptic locus; (2) the extension to an arbitrary number of non-Weierstrass pairs of points; (3) the extension to multiple descendants.
We derive three critical exponents for Bernoulli site percolation on the uniform infinite planar triangulation (UIPT). First, we compute explicitly the probability that the root cluster is infinite. As a consequence, we show that the off-critical exponent for site percolation on the UIPT is $\beta = 1/2$. Then we establish an integral formula for the generating function of the number of vertices in the root cluster. We use this formula to prove that, at criticality, the probability that the root cluster has at least n vertices decays like $n^{-1/7}$. Finally, we also derive an expression for the law of the perimeter of the root cluster and use it to establish that, at criticality, the probability that the perimeter of the root cluster is equal to n decays like $n^{-4/3}$. Among these three exponents, only the last one was previously known. Our main tools are the so-called gasket decomposition of percolation clusters, generic properties of random Boltzmann maps, and analytic combinatorics.