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Pebble trees
Vincent Pilaud
Abstract. A pebble tree is an ordered tree where each node receives some colored pebbles, in such
a way that each unary node receives at least one pebble, and each subtree has either one more or
as many leaves as pebbles of each color. We show that the contraction poset on pebble trees is
isomorphic to the face poset of a convex polytope called pebble tree polytope. Beside providing
intriguing generalizations of the classical permutahedra and associahedra, our motivation is that
the faces of the pebble tree polytopes provide realizations as convex polytopes of all assocoipahedra
constructed by K. Poirier and T. Tradler only as polytopal complexes.

1 Introduction

Permutahedra and associahedra are among the most classical polytopes in algebraic
combinatorics. The (n − 1)-dimensional permutahedron has a vertex for each per-
mutation of [n] ∶= {1, . . . , n} and an edge for each pair of permutations related by the
transposition of two adjacent entries. The (n − 1)-dimensional associahedron has a
vertex for each binary tree on n nodes and an edge for each pair of binary trees related
by a rotation. These two families of polytopes admit common generalizations explain-
ing their similar behavior, including the permutreehedra of [PP18], the quotientopes
of [PS19], and the (m, n)-multiplihedra of [CP22]. All these polytopes are actually
deformed permutahedra (defined as generalized permutahedra in [Pos09, PRW08]),
meaning that their normal fans all coarsen the braid fan. This article is devoted to
another common generalization to the permutahedra and associahedra, which are not
deformed permutahedra in general.

The combinatorics of this generalization is based on pebble trees. A pebble tree is an
ordered tree where each node receives some colored pebbles in such a way that each
unary node receives at least one pebble, and each subtree has either one more or as
many leaves as pebbles of each color (see Figure 1 and the more precise Definition 2.1).
We consider the set of pebble trees with a fixed number of leaves and fixed sets of
unbalanced and balanced colors (i.e., the colors for which the number of leaves equals
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Figure 1: Some ○-balanced and ●-unbalanced {○, ●}-pebble trees. The first two are related by a
contraction (Section 2.2), while the last two are related by a flip (Section 2.4).

or exceeds the number of pebbles). It is immediate from the definition that these
pebble trees are closed by arc contractions, and our main result is that the contraction
poset is the face poset of a simple convex polytope, that we call the pebble tree polytope
(see Figure 14). For this, we first construct the pebble tree fan, associating to each
pebble tree a polyhedral cone in a natural but subtle way, and then prove that this
fan is the normal fan of a polytope by checking that its wall-crossing inequalities are
satisfiable.

Our construction recovers the combinatorics and geometry of the permutahedra
and associahedra in two degenerate situations. On the one hand, pebble trees with a
single leaf can be seen as ordered partitions of their balanced colors, and the pebble
tree polytope is the permutahedron. On the other hand, pebble trees with no pebbles
are Schröder trees, and the pebble tree polytope is the associahedron. But the special
situation which motivated this article is when there is exactly one color of pebbles. The
pebble trees are then in bijection with some specific oriented planar trees considered
by K. Poirier and T. Tradler in [PT18] for the combinatorics of algebraic structures
endowed with a binary product and a co-inner product. These structures are closely
connected to the V∞-algebras of T. Tradler and M. Zeinalian [TZ07] that arose in a
tentative algebraic model for string topology operations defined by M. Chas and D.
Sullivan [CS99]. It is proved in [PT18] that the contraction posets on these oriented
planar trees are face lattices of the assocoipahedra, which are polytopal complexes
refining the boundary complex of the Cartesian product of an associahedron with
a simplex. We prove here that all assocoipahedra can actually be realized as convex
polytopes using faces of pebble tree polytopes (see Figure 15).

The paper is organized as follows. Section 2 is devoted to the combinatorics of
pebble trees. In Section 2.1, we provide more precise definitions and notations for
pebble trees, we introduce some natural maps between families of pebble trees, and
we give the precise bijection with the oriented planar trees of [PT18]. We introduce
in Section 2.2 the pebble tree contraction poset, prove in Section 2.3 that it is the face
poset of a pseudomanifold called the pebble tree complex, and discuss in Section 2.4
the adjacency graph of this complex called the pebble tree flip graph. Section 3 is
devoted to the geometry of pebble trees. After quickly reminding the reader some
geometric preliminaries in Section 3.1, we construct the pebble tree fan in Section 3.2
and the pebble tree polytope in Section 3.3. Finally, Section 4 is devoted to the
numerology of pebble trees. We compute the generating functions of the maximal
pebble trees in Section 4.1 and of all the pebble trees in Section 4.2, and gather
explicit expansions of these generating functions in Section 4.3. While the methods are
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standard computations based on generatingfunctionology [FS09], the results reveal a
few surprises.

2 Pebble tree combinatorics

In this section, we define pebble trees (Section 2.1) and study the pebble tree contrac-
tion poset (Section 2.2), the pebble tree complex (Section 2.3), and the pebble tree flip
graph (Section 2.4).

2.1 Pebble trees

Recall that an ordered tree is either a leaf or a node with an ordered list of subtrees.
These subtrees are the children of the node, and this node is the parent of these subtrees.
As we only consider ordered trees, we omit the adjective ordered and only say tree. For
a node n in a tree T, we denote by Tn the subtree of T rooted at n. For a subtree S, we
denote by L(S) the set of leaves of S.

Definition 2.1 For a finite set of colors Γ, a Γ-pebble tree is a tree with pebbles colored
by Γ placed on its nodes such that
(1) each leaf receives no pebble, each node with a single child receives at least one

pebble, and each node with at least two children receives arbitrary many pebbles
(possibly none),

(2) for each subtree S and each color γ ∈ Γ, the number of leaves minus the number
of pebbles of color γ in S is either 0 or 1.

Example 2.1 Two classical combinatorial objects are extreme examples of pebble
trees:
• pebble trees with a single leaf can be seen as ordered partitions of their pebble colors,
• pebble trees with no pebbles (meaning Γ = ∅) are Schröder trees (where each node

has either none or at least two children).
Some more generic examples of pebble trees are illustrated in Figure 1. Note that all
our pictures of trees start with a vertical half-edge attached to the root, and end with
half-edges representing the leaves.

Notation 2.2 We call γ-pebbles the pebbles of color γ. We call γ-pebble default of a
subtree S the difference Δγ(S) between the number of leaves and the number of γ-pebbles
of S. We say that S is γ-balanced (resp. γ-unbalanced) if Δγ(S) = 0 (resp. Δγ(S) = 1).
We denote by B(S) ∶= {γ ∈ Γ ∣ Δγ(S) = 0} (resp. U(S) ∶= {γ ∈ Γ ∣ Δγ(S) = 1}) the set of
colors γ ∈ Γ for which S is γ-balanced (resp. γ-unbalanced).

Notation 2.3 We denote by PΓ
L the set of all pebble trees with leaves L and pebble

colors Γ, and by PB ,U
L the subset of B-balanced and U-unbalanced pebble trees of PΓ

L
for any B ⊔U = Γ. For �, b, u ∈ N, we define Pb ,u

� as P[b],[b+1,b+u]
[�]

. In this case, we label
the leaves by [�] from left to right, the balanced pebble colors by [b] and the unbalanced
pebble colors by [b + 1, b + u]. Note that PB ,U

L is isomorphic to Pb ,u
� for arbitrary L, B, U

with ∣L∣ = �, ∣B∣ = b and ∣U ∣ = u. It is however convenient to keep the notation PB ,U
L

to define certain operations on pebble trees (see Definitions 2.2–2.5) and for recursive
decompositions of the pebble trees (see Section 4).
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Figure 2: A ○-balanced and ●-unbalanced {○, ●}-pebble tree (left), the ○-balanced and
●-unbalanced {○, ●}-pebble tree obtained by mirroring it (middle left), the {○, ●}-balanced
{○, ●}-pebble tree obtained by ●-balancing it (middle right), and the {○, ⋆}-balanced and
●-unbalanced {○, ●, ⋆}-pebble tree obtained by ⋆-inserting it (right).
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Figure 3: A fully balanced {○, ●}-pebble tree and the fully balanced {○, ●}-pebble trees
obtained by rerooting it at leaves x, y and z respectively (left). A fully unbalanced {○, ●}-pebble
tree and the fully balanced {○, ●, ⋆}-pebble tree obtained by ⋆-uprooting it (right).

Remark 2.4 Some immediate consequences of Definition 2.1:
• PΓ

L is finite for any L and Γ, thus Pb ,u
� is finite for any �, b, u ∈ N.

• The number of γ-pebbles at a node p with children c1 , . . . , ck is
(∑k

i=1 Δγ(Tc i )) − Δγ(Tp). Hence, the number of γ-unbalanced children of p
is the number of γ-pebbles at p, plus 1 if p is γ-unbalanced.

• Each unary node has at least one pebble, and at most one of each color.
• There is no consecutive chain formed by ∣Γ∣ + 1 unary nodes

We now define five natural maps between pebble trees (see Figures 2 and 3),
that will induce isomorphisms in Propositions 2.10, 2.17, and 3.11. In Definitions 2.4
and 2.6, we call γ-leaf the only pebble tree ofP{γ},∅

1 , i.e., whose root has a single pebble
of color γ and a single child which is a leaf.

Definition 2.2 The mirroring map sends a pebble tree T of PB ,U
L to the pebble

tree μ(T) of PB ,U
L obtained by a vertical symmetry of the tree, meaning that μ(T)

is defined inductively by
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• if T is just a leaf, then μ(T) is just a leaf,
• if T is a node with pebbles P and children C1 , . . . , C j , then μ(T) is a node with

pebbles P and children μ(C j), . . . , μ(C1).

Definition 2.3 If γ ∈ U , the γ-balancing map sends a pebble tree T of PB ,U
L to the

pebble tree βγ(T) of PB∪{γ},U/{γ}
L whose root has a single pebble of color γ and a

single child T.

Definition 2.4 If γ ∉ B ∪U , the γ-inserting map sends a pebble tree T of PB ,U
L to the

pebble tree ιγ(T) of PB∪{γ},U
L obtained from T by replacing each leaf by a γ-leaf.

Definition 2.5 If x ∈ L and U = ∅, the x-rerooting map sends a pebble tree T of PB ,∅
L

to the pebble tree ρx(T) ∈ PB ,∅
L obtained by hanging T from its leaf x. In other words,

ρx(T) is the tree on the nodes of T where the children of each node p of T are the
neighbors c of p in T so that x is in the connected component of p in the tree T were
we have deleted the edge joining p to c.

Definition 2.6 If � > 1, B = ∅ and γ ∉ U , the γ-uprooting map sends a pebble tree T
of P∅,U

[�]
to the pebble tree θγ(T) of PU∪{γ},∅

[�−1] obtained from T by first hanging T from
its rightmost leaf, then deleting the leftmost leaf and placing a γ-pebble at its parent,
and finally replacing all remaining leaves except the first by a γ-leaf.

Finally, our next three remarks connect pebble trees with other relevant families of
trees.

Remark 2.5 Consider a word α ∈ {i, o}�+1 starting with o (here, i and o stand for
incoming and outgoing). An α-tree is a rooted oriented planar tree such that
• labeling the external arrows counterclockwise starting from the root, the ith arrow

is incoming if α i = i and outgoing if α i = o,
• each internal node has at least one outgoing arrow,
• there is no node with precisely one incoming and one outgoing arrow.
These trees arise in the combinatorics of algebras endowed with a binary product and
a co-inner product. They are studied in details in [PT18]. It turns out that they can be
understood from pebble trees.

First, as illustrated in Figure 4, there are simple bijections between the pebble trees
of P1,0

� and the o�+1-trees (meaning the trees where all leaves are outgoing):
• Starting from a pebble tree T ∈ P1,0

� , orient each arc (p, c) joining a parent p to one
of its children c in T from c to p if c is balanced, and from p to c if c is unbalanced,
orient the root and leaves outward, and forget all pebbles.

• Starting from a o�+1-tree, place at each node one less pebbles than its outdegree,
and forget the orientations.

In the present paper, we prefer our interpretation as pebble trees as it enables us to
consider several pebble colors simultaneously.

Consider now an arbitrary signature α. Although not explicit in [PT18], there is
a clear map from α-trees to o�+1-trees, which consists in replacing each incoming
external arrow (like ) by a node with a pair of outgoing arrows (like ⋅). This leads to
a bijection between the α-trees and the pebble trees of P1,0

� where the parent of the ith
leaf is a unary node marked with a pebble.
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Figure 4: Examples of the bijection between the pebble trees of P1,0
3 and the o4-trees.

Remark 2.6 The reader familiar with the bijective combinatorics of planar maps
might also see some connections with the β-trees of [JS98, CS03]. Indeed, labeling
each node p of a pebble tree by the pebble default Δγ(Tp), we obtain a β(1, 1)-tree.
However, this map is clearly injective but not surjective, and the additional condition
given by the pebble trees is unclear on β(1, 1)-trees.

Remark 2.7 There is also a natural map from the pebble trees of P1,0
� to the painted

trees corresponding to the faces of the multiplihedron [Sta70, For08, CP22]. Namely,
we can just forget all pebbles which have a pebble on the path to the root of the pebble
tree to obtain a painted tree.

2.2 Pebble tree contraction poset

We now define the contraction poset on pebble trees, and will see that it is the face
poset of a simplicial complex in Section 2.3 and of a polytope in Section 3.3.

Definition 2.7 For any node c (not a leaf, nor the root) with parent p in a pebble
tree T, the contraction of c in T is the pebble tree T/c obtained by replacing c
by its children in the list of children of p and adding to p the pebbles of c. The
pebble tree contraction poset PPb ,u

� is the poset of contractions on pebble trees of Pb ,u
� .

Example 2.8 In the extreme situations of Example 2.1:
• the pebble tree contraction poset PPb ,u

1 is the refinement poset on ordered parti-
tions of [b],

• the pebble tree contraction poset PP0,0
� is the contraction poset on Schröder trees

with � leaves.
The pebble tree contraction posets PP0,1

3 and PP
1,1
2 are illustrated in Figures 5 and 6.

The fact that PP
0,1
3 and PP

1,1
2 are isomorphic can be seen applying successively

Points (5), (4), and (2) of Proposition 2.10 below.

Remark 2.9 Observe that:
• The set of pebble trees Pb ,u

� is clearly closed under contraction. Hence, the pebble
tree contraction poset is a simplicial poset (a poset where each interval is a boolean
algebra).
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Figure 5: The pebble tree contraction poset PP0,1
3 .

Figure 6: The pebble tree contraction poset PP1,1
2 .

• The pebble tree contraction poset is ranked: the rank of a pebble tree is its number
of nodes.

• The maximal pebble trees of PPb ,u
� are the pebble trees with only unary nodes

containing a single pebble and binary nodes containing no pebble (hence, they have
�(b + u) − u unary nodes and � − 1 binary nodes, thus rank �(1 + b + u) − u − 1).

• The minimal pebble tree of PP
b ,u
� is the corolla with � leaves and �(b + u) − u

pebbles at the root (hence it has rank 1).

Observe now that the mirroring, balancing, inserting, rerooting and uprooting
maps of Definitions 2.2–2.6 obviously commute with contractions. This implies the
following statement.
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Proposition 2.10 Consider the operations of Definitions 2.2–2.6.
(1) The mirroring map of Definition 2.2 defines a poset automorphism of PPb ,u

� .
(2) If u > 1, the balancing map of Definition 2.3 defines a poset isomorphism from

the pebble tree contraction poset PPb ,u
� to a principal upper set of the pebble tree

contraction poset PPb+1,u−1
� . Hence, PPb ,u

� is isomorphic to a principal upper set
of PPb+u ,0

� .
(3) The inserting map of Definition 2.4 defines a poset isomorphism from the pebble

tree contraction poset PPb ,u
� to a principal upper set of the pebble tree contraction

poset PPb+1,u
� .

(4) The rerooting maps of Definition 2.5 define poset automorphisms of PPb ,0
� .

(5) If � > 1, the uprooting map of Definition 2.6 defines a poset isomorphism from
the pebble tree contraction poset PP0,u

� to a principal upper set of the pebble tree
contraction poset PPu+1,0

�−1 .
Finally, we connect the α-trees of [PT18] to an upper set of the pebble tree

contraction poset.
Remark 2.11 Following Remark 2.5, observe that for any signature α ∈ o ⋅ {i, o}�, the
α-tree contraction poset is isomorphic to the principal upper set of the pebble tree
contraction poset PP1,0

� generated by the pebble tree whose root has � − ∣α∣i pebbles
and � children, and whose ith children is a leaf if α i = o and a unary node with one
pebble and a leaf if α i = i.
Remark 2.12 The following observations are consequences of Remarks 2.5 and 2.11
and Proposition 2.10:
• the o�+1-tree contraction poset is isomorphic to the pebble tree contraction

poset PP1,0
� ,

• for any α ∈ o ⋅ {i, o}� with a single occurrence of i, the α-tree contraction poset is
isomorphic to the pebble tree contraction poset PP0,1

� ,
• for α = ooi�−1 or α = oi�−1o, the α-tree contraction poset is isomorphic to the

pebble tree contraction poset PP0,0
�+1 (i.e., the contraction poset on Schröder trees).

2.3 Pebble tree complex

As mentioned in Remark 2.9, the pebble tree contraction poset PPb ,u
� is a simplicial

poset. We now construct the corresponding simplicial complex. For a pebble tree
in PP

b ,u
� , recall that we label the leaves by [�] from left to right, the balanced pebble

colors by [b], and the unbalanced pebble colors by [b + 1, b + u]. Recall also that we
denote by L(S) and B(S) the sets of leaves and of balanced colors in a subtree S. We
will moreover need the following notation and definition, which might be mysterious
at first sight, but aims at generalizing Example 2.14 and will be crucial in Section 3.2.
Notation 2.13 For an interval L ∶= [s, t] ⊆ [�] and a subset B ⊆ [b + u], we define the
sets

L ⊗ B ∶= ⋃
p∈B
[�p + s − 1, �p + t − 1] and L ⊠ B ∶= [s, t − 1] ∪ (L ⊗ B).

Definition 2.8 The pebble tree complex PC
b ,u
� is the simplicial complex whose sim-

plices are the sets Λ(T) ∶= {λ(S) ∣ S subtree of T} for all pebble trees T ∈ Pb ,u
� ,

where λ(S) ∶= L(S) ⊠B(S).
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Figure 7: Some ○-balanced and ●-unbalanced {○, ●}-pebble trees T and the associated sim-
plices Λ(T). Each node n of T is labeled by the concatenation of the elements of the set λ(Tn).

Figure 8: The pebble tree complex is a pseudomanifold. All possible corank 1 pebble trees are
obtained by contracting precisely two maximal pebble trees. In the second (resp. third) picture,
we mark Y (resp. X) with a ● to indicate that it is ●-balanced. Neither X nor Y are ●-balanced
in the fourth picture.

Example 2.14 In the extreme situations of Example 2.1:
• the simplices of the pebble tree complexPCb ,u

1 are the flags B1 ⊊ B2 ⊊ ⋅ ⋅ ⋅ ⊊ Bk ⊆ [b],
• the simplices of the pebble tree complex PP0,0

� are the collections of pairwise nested
or non-adjacents intervals of [� − 1].

Figure 7 illustrates some more generic examples of simplices Λ(T). Note that in these
trees, the white color ○ is labeled 1 while the black color ● is labeled 2.

Proposition 2.15 The pebble tree complex PCb ,u
� is a pseudomanifold, whose face poset

is isomorphic to the pebble tree poset PPb ,u
� .

Proof Observe first that Λ(T/n) = Λ(T)/{λ(Tn)} for any node n (not a leaf, nor
the root) in a pebble tree T. Hence, the face poset of PCb ,u

� is indeed isomorphic
toPPb ,u

� . We thus obtain thatPCb ,u
� is a pure simplicial complex sincePPb ,u

� is a ranked
simplicial poset. It remains to prove that PCb ,u

� is a pseudomanifold, meaning that
any ridge (i.e., codimension 1 face) is contained in precisely two facets (i.e., maximal
dimensional faces). Consider thus a pebble tree of corank 1, and let p be the only node
which is neither unary with a pebble, nor binary with no pebble. We want to prove
that there are two ways to open p, meaning to replace p by an edge whose contraction
gives back p. We distinguish three cases:
• If p has three children and no pebble, then there are two ways to open p as usual

(see Figure 8 (left)) and it does not matter whether p and its children are balanced
or not for each pebble color.
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10 V. Pilaud

• If p has two children and a γ-pebble, then p is γ-balanced, and there are still two ways
to open p depending on whether its children are γ-balanced or not (see Figure 8
(middle)).

• If p has one child and two pebbles of different colors, then there are still two ways
to open p choosing which pebble goes in the parent and which pebble goes in the
child (see Figure 8 (right)).

∎
Remark 2.16 In contrast to the special situations of Example 2.1, the pebble tree
complex is not flag in general. For instance, PC1,0

2 and PC
0,1
3 are not flag.

Finally, we translate Proposition 2.10 and Remark 2.11 to the pebble tree complex.

Proposition 2.17 Consider the operations of Definitions 2.2–2.6.
(1) The map defined by � j + i − δ j≠0 ↦ �( j + 1) − i for any

(i , j) ∈ ([�] × [0, b + u])/{(�, 0)} induces an automorphism of the pebble
tree complex PC

b ,u
� .

(2) If u > 1, the pebble tree complex PC
b ,u
� is isomorphic to the link of the face

[�] ⊠ [b] in the pebble tree complex PCb+1,u−1
� . Hence, PCb ,u

� is isomorphic to a link
of PCb+u ,0

� .
(3) The pebble tree complex PC

b ,u
� is isomorphic to the link of the face

{{i} ⊠ [1] ∣ i ∈ [�]} in the pebble tree complex PC
b+1,u
� .

(4) The rerooting maps of Definition 2.5 induce automorphisms of the pebble tree
complex PC

b ,0
� .

(5) If � > 1, the pebble tree complex PC
0,u
� is isomorphic to the link of the face

{{i} ⊠ [1] ∣ i ∈ [2, � − 1]} in the pebble tree complex PC
u+1,0
�−1 .

Remark 2.18 Following Remarks 2.5 and 2.11, observe that for any signa-
ture α ∈ {i, o}�+1, the α-tree complex is isomorphic to the link of the face
{{i} ⊠ [1] ∣ α i = i} in the pebble tree complex PC

1,0
� .

2.4 Pebble tree flip graph

As the pebble tree complexPCb ,u
� is a pseudomanifold by Proposition 2.15, it is natural

to consider its dual graph.

Definition 2.9 Two maximal pebble trees T and T ′ of PPb ,u
� are related by a flip

if there are nodes n of T and n′ of T ′ such that the following equivalent conditions
hold:
• the contraction T/n coincides with the contraction T ′/n′,
• Λ(T)/{λ(Tn)} = Λ(T ′)/{λ(T ′n′)}.
All possible types of flips are illustrated in Figure 9. The flip graph is the graph whose
vertices are the maximal pebble trees of PPb ,u

� and whose edges are the flips between
them.

Example 2.19 In the extreme situations of Example 2.1:
• the flip graph onPb ,u

1 is the graph of adjacent transpositions on permutations of [b],
• the flip graph on P0,0

� is the rotation graph on binary trees with � leaves.
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Pebble trees 11

Figure 9: All possible flips in a maximal pebble tree. In the second (resp. third) picture, we
mark Y (resp. X) with a ● to indicate that it is ●-balanced. Neither X nor Y are ●-balanced in
the fourth picture.

○

○ ●

○
●

○

○

○ ●

●

○

○ ● ○
●

○

○ ● ○
●

○

○ ● ●
○

○

○ ●

● ○

○
●

○ ● ○

○
●

○ ● ○

●
○

○ ● ○

Figure 10: A sequence of flips in maximal ○-balanced and ●-unbalanced {○, ●}-pebble trees.

Figure 11: The flip graph on pebble trees of P0,1
3 .

These extreme situations correspond to the right and left cases of Figure 9 respectively.
Figure 10 illustrates a sequence of flips in maximal pebble trees of P1,1

3 . Figures 11
and 12 illustrate the flip graphs on maximal pebble trees of P0,1

3 and P1,1
2 (which are

isomorphic by Proposition 2.10 as already mentioned before).

As the dual graph of a pure simplicial pseudomanifold, the pebble tree flip graph
is regular. Its degree is �(1 + b + u) − u − 2. As we will see in Theorem 3.8 that it is
the graph of a simple polytope, it has the connectivity of its degree. Among various
further properties of this graph that would require more investigations, we mention
the following problem in connection to [STT88, Pou14].

Problem 2.20 Evaluate the diameter of the flip graph on maximal pebble trees of Pb ,u
� .

Finally, note that Proposition 2.10 and Remark 2.11 directly translate to morphisms
between the flip graphs on the corresponding trees.
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12 V. Pilaud

Figure 12: The flip graph on pebble trees of P1,1
2 .

3 Pebble tree geometry

This section is devoted to the geometry of pebble trees. After quickly reminding the
reader some geometric preliminaries (Section 3.1), we construct the pebble tree fan
(Section 3.2) and the pebble tree polytope (Section 3.3).

3.1 Geometric preliminaries

We refer to [Zie98] for a reference on polyhedral geometry, and only remind the basic
notions needed later in the paper.

A (polyhedral) cone is the positive span R≥0R of a finite set R of vectors of Rd

or equivalently, the intersection of finitely many closed linear half-spaces of Rd . The
faces of a cone are its intersections with its supporting hyperplanes. The rays (resp.
facets) are the faces of dimension 1 (resp. codimension 1). A cone is simplicial if its
rays are linearly independent. A (polyhedral) fan F is a set of cones such that any face
of a cone of F belongs to F, and any two cones of F intersect along a face of both.
A fan is essential if the intersection of its cones is the origin, complete if the union of
its cones covers Rd , and simplicial if all its cones are simplicial.

Note that a simplicial fan defines a simplicial complex on its rays (the simplices of
the simplicial complex are the subsets of rays which span a cone of the fan). Conversely,
given a simplicial complex Δ with ground set V, one can try to realize it geometrically
by associating a ray rv of Rd to each v ∈ V , and the cone R≥0R△ generated by the
set R△ ∶= {rv ∣ v ∈ △} to each △ ∈ Δ. To show that the resulting cones indeed form
a fan, we will need the following statement, which can be seen as a reformulation of
[DRS10, Corollary 4.5.20].

Proposition 3.1 Consider a closed simplicial pseudomanifold Δ with ground set V
and a set of vectors (rv)v∈V of Rd , and define R△ ∶= {rv ∣ v ∈ △} for any △ ∈ Δ. Then
the collection of cones {R≥0R△ ∣ △ ∈ Δ} forms a complete simplicial fan of Rd if and
only if
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Pebble trees 13

• there exists a vector v of Rd contained in only one of the open cones R>0R△ for△ ∈ Δ,
• for any two adjacent facets △,△′ of Δ with △/{v} = △′/{v′}, we have αv αv′ > 0

where

αv rv + αv′ rv′ + ∑
w∈△∩△′

αw rw = 0

denotes the unique (up to rescaling) linear dependence on R△∪△′ .

A polytope is the convex hull of finitely many points of R
d or equivalently, a

bounded intersection of finitely many closed affine half-spaces of Rd . The faces of a
polytope are its intersections with its supporting hyperplanes. The vertices (resp. edges,
resp. facets) are the faces of dimension 0 (resp. dimension 1, resp. codimension 1).

The normal cone of a face F of a polytope P is the cone generated by the normal
vectors to the supporting hyperplanes ofP containingF. Said differently, it is the cone
of vectors c ofRd such that the linear form x ↦ ⟨ c ∣ x ⟩ onP is maximized by all points
of the face F. The normal fan of P is the set of normal cones of all its faces.

Consider now a complete simplicial fan F of R
d with rays (rv)v∈V and

cones R≥0R△ for△ ∈ Δ, where R△ ∶= {rv ∣ v ∈ △} as in Proposition 3.1. To realize the
fan F, one can try to pick a height vector h ∶= (hv)v∈V ∈ RV and consider the polytope
Ph: = {x∈Rd ∣ ⟨ rv ∣ x ⟩ ≤hv for all v∈V}. The following classical statement characterizes
the height vectors h for which the fan F is the normal fan of this polytope Ph . We
borrow the formulation from [CFZ02, Lemma 2.1].

Proposition 3.2 Let F be an essential complete simplicial fan in R
n with rays

(rv)v∈V and cones R≥0R△ for △ ∈ Δ. Then the following are equivalent for any height
vector h ∈ RV :
• The fan F is the normal fan of the polytope

Ph ∶= {x ∈ Rd ∣ ⟨ rv ∣ x ⟩ ≤ hv for all v ∈ V} .

• For two adjacent facets△,△′ of Δ with△/{v} = △′/{v′}, the height vector h satisfies
the wall crossing inequality

αv hv + αv′ hv′ + ∑
w∈△∩△′

αw hw > 0

where

αv rv + αv′ rv′ + ∑
w∈△∩△′

αw rw = 0

denotes the unique linear dependence on R△∪△′ such that αv + αv′ = 2.

3.2 Pebble tree fan

Fix �, b, u ∈ N and consider the intervals

I0 ∶= [�(b + 1) − 1] and I i ∶= [�(b + i), �(b + i + 1) − 1] for all i ∈ [u]

whose union is the interval

I ∶= I0 ⊔ I1 ⊔ ⋅ ⋅ ⋅ ⊔ Iu = [�(b + u + 1) − 1].
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14 V. Pilaud

We work in the Euclidean space R
I with canonical basis (e i)i∈I . We denote

by 1J ∶= ∑ j∈J e j the characteristic vector of a subset J ⊆ I. As our constructions actually
live in the linear subspace

H
b ,u
�

∶= {x ∈ RI ∣ ⟨ 1I i ∣ x ⟩ = 0 for all 0 ≤ i ≤ u} ,

we define the vector

r J ∶=
u
∑
i=0
(∣I i/J∣ ⋅ 1I i∩J − ∣I i ∩ J∣ ⋅ 1I i/J) ∈ Hb ,u

�

for each subset J ⊆ I. It is immediate to check that these vectors satisfy the linear
dependences

r J + rK = r J∪K + r J∩K

for any J , K ⊆ I. Finally, we associate to any pebble subtree S the vector
rS ∶= rλ(S) = rL(S)⊠B(S) where L(S) and B(S) denote the sets of leaves and of balanced
colors in S, and the operation ⊠ was defined in Definition 2.13. Note that rS = 0 when
S is the entire tree T (because L(T) = [�] and B(T) = [b] so that λ(T) = I0) or when
S is a leaf i (because L(S) = {i} and B(S) = ∅ so that λ(S) = ∅). We now use these
vectors rS to construct the pebble tree fan.

Definition 3.1 The pebble tree fan PF
b ,u
� is the collection of cones

C(T) ∶= cone{rS ∣ S subtree of T}
for all pebble trees T ∈ Pb ,u

� , where rS ∶= rλ(S) = rL(S)⊠B(S).

Example 3.3 In the extreme situations of Example 2.1:
• the pebble tree fan PF

b ,u
1 is the braid fan, with a ray r J for each proper

subset ∅ ≠ J ⊊ [b] and a maximal cone C(σ) for each permutation σ of [b],
defined by the inequalities xσ(1) ≤ ⋅ ⋅ ⋅ ≤ xσ(b),

• the pebble tree fan PF
0,0
� is the sylvester fan, with a ray r J for each proper interval J

of [�] and a maximal cone C(T) for each binary tree T, defined by the inequalities
x i ≤ x j whenever there is a path from i to j in the tree T labeled in inorder and
oriented toward its root.

Note that the sylvester fan coarsens the braid fan: the cone C(T) of the sylvester fan
can also be obtained by glueing the cones C(σ) of the braid fan corresponding to the
linear extensions σ of T.

Theorem 3.4 The pebble tree fan PF
b ,u
� is an essential complete simplicial fan in H

b ,u
� ,

whose face lattice is the pebble tree contraction poset PPb ,u
� .

The proof of Theorem 3.4 relies on the description of the linear dependences among
adjacent maximal cones described in Lemma 3.6. To obtain these dependences, we
need the following preliminary statement, where we use the operation ⊗ defined in
Definition 2.13.

Lemma 3.5 For any maximal pebble tree S and any B ⊆ B(S), there are in S some
distinct unary subtrees U1 , . . . , Uk with children V1 , . . . , Vk respectively such that
rL(S)⊗B = ∑i∈[k] rU i − rVi .
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Figure 13: The four cases of the proof of 3.6.

Proof If a subtree U has a γ-pebble and a unique child V, then we have
rL(U)⊗{γ} = rU − rV because L(U) = L(V) and B(U) = B(V) ⊔ {γ}. Hence,
for any γ ∈ B(S), if we denote by U1 , . . . , Uk the closest descendants of S
with a γ-pebble and by V1 , . . . , Vk their respective children, then we have
rL(S)⊗{γ} = ∑i∈[k] rL(U i)⊗{γ} = ∑i∈[k] rU i − rVi because L(S) = ⊔i∈[k] L(U i).
The result follows since rL(S)⊗B = ∑γ∈B rL(S)⊗{γ}. ∎

Lemma 3.6 Let T and T ′ be two adjacent maximal pebble trees and let S and S′ be the
subtrees of T and T′ such that Λ(T)/{λ(S)} = Λ(T ′)/{λ(S′)}. Then there is a linear
dependence among the rays rR associated with the subtrees R of T and T ′ where the
rays rS and rS′ both have coefficient 1.

Proof We analyse the five possible types of flips described in Figure 9. In all cases,
we denote by R the parent of S and S′. See Figure 13 here.

Case 1. For the first flip of Figure 13, we have
L(S) = L(X) ⊔ L(Y) L(S′) = L(Y) ⊔ L(Z) L(R) = L(X) ⊔ L(Y) ⊔ L(Z)
B(S) = B(X) ∩B(Y) B(S′) = B(Y) ∩B(Z) B(R) = B(X) ∩B(Y) ∩B(Z)
which yields

rS + rS′ = rR + rY + rL(S)⊗(B(S)/B(R)) + rL(S′)⊗(B(S′)/B(R)) − rL(Y)⊗B(Y)

Since rL(S)⊗(B(S)/B(R)) (resp. rL(S′)⊗(B(S′)/B(R)), resp. rL(Y)⊗B(Y)) is a linear com-
bination of the rays rP for some subtrees P of S distinct from S (resp. of S′ distinct
from S′, resp. of Y) by Lemma 3.5, this is indeed a linear dependence among the
rays rQ associated with the subtrees Q of T and T ′ where the rays rS and rS′ both
have coefficient 1.

Case 2. For the second flip of Figure 13, we have
L(S) = L(X) L(S′) = L(X) ⊔ L(Y) L(R) = L(X) ⊔ L(Y)
B(S) = B(X) ⊔ {●} B(S′) = B(X) ∩B(Y) B(R) = (B(X) ∩B(Y)) ⊔ {●}
which yields rS + rS′ = rR + rX − rL(Y)⊗{●}

Again, we can develop rL(Y)⊗{●} using Lemma 3.5, so that we indeed obtained a
linear dependence among the rays rQ for the subtrees Q of T and T ′ where the rays
rS and rS′ both have coefficient 1.

Case 3. The case of the third flip of Figure 13, is symmetric to Case 2.
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16 V. Pilaud

Case 4. For the fourth flip of Figure 13, assume first that R has an ancestor with a
●-pebble. Then we additionally denote
• by U0 the closest ancestor of R which has a ●-pebble,
• by U1 , . . . , Uk the closest descendants of U0 but not descendants of R

which have a ●-pebble,
• by V0 , V1 , . . . , Vk the (unique) children of U0 , U1 , . . . , Uk respectively.

We have
L(S) = L(X) L(S′) = L(Y) L(U i) = L(Vi)
B(S) = B(X) ⊔ {●} B(S′) = B(Y) ⊔ {●} B(U i) = B(Vi) ⊔ {●}

and moreover L(U0) = L(S) ⊔ L(S′) ⊔ L(U1) ⊔ ⋅ ⋅ ⋅ ⊔ L(Uk). Using Lemma 3.5, we get

rU0 − rV0 = rL(U0)⊗{●} = rS − rX + rS′ − rY + rU1 − rV1 + ⋅ ⋅ ⋅ + rUk − rVk

or, written differently

rS + rS′ = rX + rY + rU0 − rV0 − rU1 + rV1 + ⋅ ⋅ ⋅ − rUk + rVk

Now if R has no ancestor with a ●-pebble, then using that rL(T)⊗{●} = 0, we obtain
similarly

rS + rS′ = rX + rY − rU1 + rV1 + ⋅ ⋅ ⋅ − rUk + rVk

where
• U1 , . . . , Uk are the closest descendants of the root of T but not descendants of R

which have a ●-pebble,
• V1 , . . . , Vk are the (unique) children of U1 , . . . , Uk respectively.

Case 5. For the fifth flip of Figure 13, we have
L(S) = L(X) L(S′) = L(X) L(R) = L(X)
B(S) = B(X) ⊔ {●} B(S′) = B(X) ⊔ {○} B(R) = B(X) ⊔ {○, ●}
which yields rS + rS′ = rR + rX

∎

Proof of Theorem 3.4 Note that PF
b ,u
� is included in H

b ,u
� since all rays r1=J

are. To prove that it is a complete simplicial fan, we just check the two criteria of
Proposition 3.1. The second criterion is guaranteed by the description of the linear
dependences in Lemma 3.6. For the first criterion, consider the vector

v = ∑
i∈[�−2]

r[i] + ∑
i∈[b]

2�+i r[�i ,�(i+1)−1] + ∑
i∈[u]

2�+b+i r[�i+1,�(i+1)−1] ,

and a pebble tree T such that v is contained in the interior of C(T). As the last � − 1
coordinates of v are strictly larger than all other coordinates, each of the last � − 1
leaves of T is preceded by a unary node with pebble colored by b + u. Repeating the
argument, we obtain that the first leaf of T is preceded by a chain of unary nodes with
pebbles colored 1, . . . , b while each of the last � − 1 leaves if T is preceded by a chain
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of unary nodes with pebbles colored 1, . . . , b + u. Finally, we obtain that the rest of the
tree T is the left comb since it is the only Schröder tree whose cone in the sylvester
fan contains the vector ∑i∈[�−2] r[i]. Finally, PFb ,u

� is essential as the dimension of its
cones matches the dimension of Hb ,u

� . ∎

Remark 3.7 A few observations on the pebble tree fan:
• The simple descriptions of Example 3.3 for the braid fan and for the sylvester fan

unfortunately fail for arbitrary b, u ≥ 0. Indeed, there is a natural way to label the
nodes of a maximal pebble tree: label the binary nodes in inorder by [� − 1] and
the unary nodes by the only leaf first covered by this pebble. This labeling yields
a cone C(T) for each maximal pebble tree T, defined by x i ≤ x j whenever there
is a directed path from i to j in the tree T oriented toward its root. However, the
cones C(T) for all maximal pebble trees T do not define a complete simplicial fan
(check out the case � = 2, b = 1 and u = 0). In fact, our pebble tree fan PF

b ,u
� is not

refined by the braid fan in general
• Our definition of the pebble tree fan PF

b ,u
� respects some symmetries of the pebble

tree complex PC
b ,u
� but not all. See Proposition 3.11 for a precise statement directly

on polytopes.
• Lemma 3.6 actually proves that the pebble tree fan PF

b ,u
� is smooth, meaning

that the principal vectors spanning the rays of any maximal cone of PFb ,u
� form

an integral basis of the space (in other words, the corresponding toric variety is
smooth).

3.3 Pebble tree polytope

Our next step is to construct a polytope whose normal fan is the pebble tree fan, using
the criterion of Proposition 3.2.

Definition 3.2 A submodular function on n is a map f from the subsets of [n] to R≥0
such that f∅ = 0 and

fA∪B + fA∩B ≤ fA + fB

for any subsets A and B of [n]. We then define

Δ f ∶= min ( fA + fB − fA∪B − fA∩B)

where the minimum ranges over all subsets A and B of [n] such that A /⊆ B and A /⊇ B.
Note that
• ∑i∈[k] fA i − fA ≥ (k − 1) ⋅ Δ f for any A = ⋃i∈[k] A i where A1 , . . . , Ak are pairwise

disjoint,
• Δλ f = λΔ f for any scalar factor λ.
We say that f is strictly submodular when Δ f > 0.

Theorem 3.8 Pick three strictly submodular functions f on �, g on �, and h on b + u
such that

Δ f > 4(�b + �u − u) ⋅ (max g +max h) and Δg > (�b + �u − u + 1) ⋅max h.
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18 V. Pilaud

Then the pebble tree fan PF
b ,u
� is the normal fan of the pebble tree polytope

PTPb ,u
� ( f , g , h), the (� + �b + �u − u − 2)-dimensional polytope defined in the sub-

space Hb ,u
� by the inequalities

⟨ r[s ,t]⊠B ∣ x ⟩ ≤ f[s ,t] + g[s ,t] ⋅ ∣B∣ + hB

for all 1 ≤ s ≤ t ≤ � and all B ⊆ [b + u].

Proof To shorten notations in this proof, we define for a maximal pebble subtree S

fS ∶= fL(S) , gS ∶= gL(S) , hS ∶= hB(S) , and φS ∶= fL(S) + gL(S) ⋅ ∣B(S)∣ + hB(S) .

Observe that if V is the unique child of U, then φU − φV = gU + hU − hV because
L(U) = L(V) and ∣B(U)∣ = ∣B(V)∣ + 1. We just need to prove that the function φ satis-
fies the wall-crossing inequalities of Proposition 3.2 for each of the linear dependences
boxed in the proof of Lemma 3.6.

Case 1. By Lemmas 3.5 and 3.6, we have

rS + rS′ − rR − rY − ∑
i∈[k]

(rU i − rVi ) − ∑
i∈[k′]

(rU ′i − rV ′i ) + ∑
i∈[k′′]

(rU ′′i − rV ′′i
) = 0

for distinct unary subtrees U1 , . . . , Uk of S (resp. U ′1 , . . . , U ′k′ of S′, resp. U ′′1 , . . . , U ′′k′′
of Y) with respective children V1 , . . . , Vk (resp. V ′1 , . . . , V ′k′ , resp. V ′′1 , . . . , V ′′k′′).
Since L(R) = L(S) ∪ L(S′) and L(Y) = L(S) ∩ L(S′), we have

fS + fS′ − fR − fY ≥ Δ f > 4(�b + �u − u)(max g +max h)
≥ (gR + hR) + (gY + hY) + ∑

i∈[k]
(gU i + hU i ) + ∑

i∈[k′]
(gU ′i + hU ′i ) + ∑

i∈[k′′]
(gV ′′i

+ hV ′′i
),

where the last inequality holds since U i ≠ U j (resp. U ′i ≠ U ′j , resp. V ′′i ≠ V ′′j ) for i ≠ j,
and the pebble tree T has �b + �u − u unary subtrees. Since f , g , h take non-negative
values and φU − φV = gU + hU − hV when V is the unique child of U, we obtain that φ
satisfies the wall-crossing inequality

φS + φS′ − φR − φY − ∑
i∈[k]

(φU i − φVi ) − ∑
i∈[k′]

(φU ′i − φV ′i ) + ∑
i∈[k′′]

(φU ′′i − φV ′′i
) > 0.

Case 2. By Lemma 3.6, we have

(rR − rS′) − (rS − rX) − ∑
i∈[k]

(rU i − rVi ) = 0

for distinct unary subtrees U1 , . . . , Uk of Y with children V1 , . . . , Vk , such
that ⊔i∈[k] L(U i) = L(Y). Since L(R) = L(S) ⊔ L(Y), we obtain that
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gR − gS − ∑
i∈[k]

gU i ≥ (k − 1) ⋅ Δg ≥ Δg > (�b + �u − u + 1) ⋅max h

≥ hS′ + hS + ∑
i∈[k]

hU i ,

where the last inequality holds since S ≠ U i ≠ U j for i ≠ j, and the subtree R
has at most �b + �u − u unary subtrees. Since f , g , h take non-negative values
and φU − φV = gU + hU − hV when V is the unique child of U, we obtain that φ
satisfies the wall-crossing inequality

(φR − φS′) − (φS − φX) − ∑
i∈[k]

(φU i − φVi ) > 0.

Case 3. Symmetric to Case 2.
Case 4. Assume first that R has an ancestor with a ●-pebble. Then by Lemma 3.6,

we have

(rU0 − rV0) − (rS − rX) − (rS′ − rY) − ∑
i∈[k]

(rU i − rVi ) = 0.

Since L(U0) = L(S) ⊔ L(S′) ⊔ ⊔i∈[k] L(U i), we obtain that

gU0 − gS − gS′ − ∑
i∈[k]

gU i

≥ (k + 1) ⋅ Δg ≥ Δg > (�b + �u − u + 1) ⋅max h > hV0 + hS + hS′ + ∑
i∈[k]

hU i ,

where the last inequality holds since S ≠ U i ≠ U j ≠ S′ for i ≠ j, and the subtree
U0 has at most �b + �u − u unary subtrees. Since f , g , h take non-negative values
and φU − φV = gU + hU − hV when V is the unique child of U, we obtain that φ
satisfies the wall-crossing inequality

(φU0 − φV0) − (φS − φX) − (φS′ − φY) − ∑
i∈[k]

(φU i − φVi ) > 0.

Assume now that R has no ancestor with a ●-pebble. Then we have

(rS − rX) + (rS′ − rY) + ∑
i∈[k]

(rU i − rVi ) = 0.

The wall-crossing inequality is thus even easier to satisfy since φU0 − φV0 does not
appear.

Case 5. By Lemma 3.6, we have

rS + rS′ − rR − rX = 0

Since L(R) = L(S) = L(S′) = L(X) and B(R) = B(S) ⊔ {○} = B(S′) ⊔ {●} = B(X) ⊔
{○, ●}, we have

φS + φS′ − φR − φX = hS + hS′ − hR − hR > 0. ∎
Remark 3.9 Note that the conditions of Theorem 3.8 are just sufficient con-
ditions to ensure the wall-crossing inequalities. To find functions satisfying
these conditions, pick three arbitrary strictly submodular functions f , g , h and
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20 V. Pilaud

Figure 14: The pebble tree polytopes PTP0,1
3 (left) and PTP1,1

2 (right).

rescale first g by a factor 4(�b + �u − u + 1) ⋅max h/Δg, and then f by a factor
(�b + �u − u) ⋅ (max g +max h)/Δ f . We just write PTPb ,u

� if we want to consider
PTPb ,u

� ( f , g , h) for arbitrary f , g , h satisfying the conditions of Theorem 3.8.

Example 3.10 In the extreme situations of Example 2.1:
• the pebble tree fan PF

b ,u
1 (a.k.a. braid fan) is the normal fan of the classical

permutahedron, which can be obtained for hB = (b+1
2 ) − (

∣B∣+1
2 ) (the functions f

and g are irrelevant here, since [s, t] is constant to [1]),
• the pebble tree fan PF

0,0
� (a.k.a. sylvester fan) is the normal fan of the classical

associahedron [SS93, Lod04], which can be obtained for fX = (�+1
2 ) − (

∣X∣+1
2 ) (the

functions g and h are irrelevant here, since B is constant to ∅).
Figure 14 illustrates polytopal realizations of the pebble tree fans PF0,1

3 and PF
1,1
2 . Note

that, while they have the same combinatorics by Proposition 2.10, their geometric
realizations differ.

Finally, we translate the first three points of Proposition 2.10 and Remark 2.11 to
pebble tree polytopes. Note that the last two transformations of Proposition 2.10 do
not respect the geometry of the pebble tree polytopes.

Proposition 3.11 Consider the operations of Definitions 2.2–2.4.
(1) The map defined by e� j+i−δ j≠0 ↦ e�( j+1)−i for any (i , j) ∈ ([�] × [0, b +

u])/{(�, 0)} induces an isometry of the pebble tree polytope PTPb ,u
� ( f , g , h).

(2) If u > 1, the pebble tree polytope PTPb ,u
� ( f , g , h) is a facet of the pebble tree

polytope PTPb+1,u−1
� ( f , g , h). Hence, PTPb ,u

� ( f , g , h) is a codimension u face
of PTPb+u ,0

� ( f , g , h).
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Figure 15: The α-assocoipahedra for α = oiioi (left) and α = oooi (right), realized as faces of
the pebble tree polytopes PTP1,0

4 and PTP1,0
3 .

(3) The pebble tree polytope PTPb ,u
� ( f , g , h) is a codimension � face of the pebble tree

polytope PTPb+1,u
� ( f , g , h′) where h(X) = h′({x + 1 ∣ x ∈ X}) for X ⊆ [b + u].

Remark 3.12 Following Remarks 2.5, 2.11, and 2.18, observe that for any signa-
ture α ∈ {i, o}�+1, the α-assocoipahedron of [PT18] is realized by a face of the pebble
tree polytope PTP1,0

� . For instance, Figure 15 shows faces of the pebble tree poly-
topes PTP1,0

4 and PTP1,0
3 which realize the α-assocoipahedra for α = oiioi and

α = oooi presented in [PT18, Figures 8, 9, 14, and 15]. Note that the combinatorics
of the oooi-assocoipahedra represented in Figure 15 (right) is also isomorphic to the
pebble tree polytopes PTP0,1

4 represented in Figure 14 by combining Points (2) and
(4) of Proposition 2.17.

4 Pebble tree numerology

In this section, we compute the generating functions of the maximal pebble trees
(Section 4.1) and of all the pebble trees (Section 4.2), and gather explicit expan-
sions of these generating functions (Section 4.3). While the methods are standard
computations based on generatingfunctionology [FS09], the results reveal a few
surprises. All references like A000108 are entries of the Online Encyclopedia of Integer
Sequences [OEI10].

4.1 Enumeration of maximal pebble trees

We start with the enumeration of the maximal pebble trees which is significantly
simpler.

Definition 4.1 For �, u, b ∈ N, we denote by mb ,u
� the number of maximal pebble

trees of Pb ,u
� (i.e., with � leaves, b balanced and u unbalanced colors). We consider
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22 V. Pilaud

the generating function

M
b ,u(x) ∶=

∞

∑
�=1

mb ,u
� x� .

Proposition 4.1 The generating functions Mb ,u(x) satisfy the functional equations

M
b ,u(x) = x ⋅ δb=0 + b ⋅Mb−1,u+1(x) +

u
∑
v=0

(u
v
) ⋅Mb+v ,u−v(x) ⋅Mb+u−v ,v(x),

where δ is the Kronecker delta. Hence, Mb ,u(x) is algebraic for any b, u ∈ N.

Proof A maximal pebble tree in PB ,U
[s ,t] is:

• either a leaf if s = t and B = ∅,
• or a unary node with a single pebble colored by γ ∈ B and a child in P

B/{γ},U∪{γ}
[s ,t] ,

• or a binary node with no pebble and two children in PB ,V
[s ,r] and P

B ,U/V
[r ,t]

for some r ∈ [s, t] and V ⊆ U .
The functional equations for Mb ,u(x) are immediate consequences of this struc-
tural decomposition by classical generatingfunctionology [FS09]. The algebraicity
of Mb ,u(x) follows as it belongs to a system of finitely many polynomial equations
(all equations for a given sum b + u). ∎
Example 4.2 When b = u = 0, we recover the functional equation
M0,0(x) = x +M0,0(x)2 which yields the classical Catalan generating function

M
0,0(x) = 1 −

√
1 − 4x
2

= x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + ⋅ ⋅ ⋅ (A000108)
Example 4.3 For b + u = 1, we obtain that

M
1,0(x) =M

0,1(x) +M
1,0(x)2 and M

0,1(x) = x + 2 ⋅M1,0(x) ⋅M0,1(x)
from which we can compute the expansions

M
1,0(x) = x + 3x2 + 16x3 + 105x4 + 768x5 + 6006x6 + 49152x7 + ⋅ ⋅ ⋅ (A085614)

M
0,1(x) = x + 2x2 + 10x3 + 64x4 + 462x5 + 3584x6 + 29172x7 + ⋅ ⋅ ⋅ (A078531)

These functions actually both satisfy a cubic equation, namely

2 ⋅M1,0(x)3 − 3 ⋅M1,0(x)2 +M
1,0(x) − x = 0 and

4 ⋅M0,1(x)3 −M
0,1(x)2 + x2 = 0.

Example 4.4 For b + u = 2, we obtain

M
2,0(x) = 2 ⋅M1,1(x) +M

2,0(x)2 ,(4.1)

M
1,1(x) =M

0,2(x) + 2 ⋅M2,0(x) ⋅M1,1(x),(4.2)

M
0,2(x) = x + 2 ⋅M2,0(x) ⋅M0,2(x) + 2 ⋅M1,1(x)2 .(4.3)
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From which we can compute the expansions:

M
2,0(x) = 2x + 24x2 + 496x3 + 12560x4 + 354048x5 + 10665088x6 + ⋅ ⋅ ⋅

M
1,1(x) = x + 10x2 + 200x3 + 5000x4 + 140000x5 + 4200000x6 + ⋅ ⋅ ⋅ (A156275)

M
0,2(x) = x + 6x2 + 112x3 + 2728x4 + 75360x5 + 2242304x6 + ⋅ ⋅ ⋅

The expansion of M1,1(x) is quite surprising, but can be explained by a tiny
functional miracle. Indeed, observe that we obtain that 2 ⋅M1,1(x) =M2,0(x) ⋅ (1 −
M2,0(x)) from Equation (4.1) and that M0,2(x) =M1,1(x) ⋅ (1 − 2 ⋅M2,0(x)) from
Equation (4.2). Replacing M0,2(x) on both sides of Equation (4.3), we obtain

M
1,1(x) = x + 4 ⋅M1,1(x) ⋅M2,0(x) ⋅ (1 −M

2,0(x)) + 2 ⋅M1,1(x)2

= x + 10 ⋅M1,1(x)2 .(4.4)

This shows that m1,1
� = 10�−1C�, where C� = 1

�+1(
2�
�
) is the Catalan number.

Consider the map sending a maximal pebble tree of P1,1
� to its underlying binary

tree. In view of the formula m1,1
� = 10�−1C�, it is natural to expect that its fibers all have

size 10�−1. However, while the size of the fiber of a binary tree T is clearly invariant
under reordering the children of T, it is not constant on all binary trees already
for � = 4. Namely, the fiber of the binary tree whose children are both the tree on 2
leaves contains 968 pebble trees of P1,1

4 , while the fiber of each of the remaining 4
binary trees on 4 leaves contains 1008 pebble trees of P1,1

4 .
Despite this disappointing observation, one can provide a bijective explanation for

the appearance of the Catalan numbers in m1,1
� . It requires the following observation.

Example 4.4 Any maximal ○-balanced ●-unbalanced pebble
tree can be uniquely obtained from a right comb by attaching
• to each left leaf, a maximal {○, ●}-balanced pebble tree,
• to the right leaf, a maximal ○-balanced ●-unbalanced pebble

tree, whose root is
– either a unary node with a ○ pebble, whose unique child X is
{○, ●}-unbalanced,

– or a binary node with no pebble, whose left child Y is ○-
balanced ●-unbalanced and whose right child Z is {○, ●}-
balanced.

These two options are illustrated on the right. A similar decom-
position holds with a left comb instead of a right comb.

T1

Tk ○
X

T1

Tk Y Z

We now proceed to define, for �, r ≥ 1, an explicit bijection ψ sending a triple
(T , L, R) of maximal pebble trees of P1,1

2 , P1,1
� , and P1,1

r respectively to a maximal
pebble tree of P1,1

�+r . The image ψ(T , L, R) is described in Figure 16. Note that
ψ(T , L, R) sometimes depends on the type of L or R in the sense of the decomposition
of Remark 4.5. In this description, we denote by T the ●-balanced ○-unbalanced
pebble tree obtained by exchanging the ○ and ● pebbles in a ○-balanced ●-unbalanced
pebble tree T. As the decomposition of Remark 4.5 is unique, the map ψ is well defined,
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24 V. Pilaud

and it is immediate to check that the resulting trees are maximal pebble trees of P1,1
�+r .

Again by Remark 4.5, it is straightforward to check that ψ is bijective. Finally, as
m1,1

2 = 10, the existence of the bijection ψ directly implies Equation (4.4), hence the
fact that m1,1

� = 10�−1C�.

4.2 Enumeration of all pebble trees

We now consider all pebble trees.

Definition 4.2 For �, n, u, b ∈ N, we denote by pb ,u
�,n the number of pebble tree with �

leaves, n nodes, b balanced and u unbalanced colors. We consider the generating
function

P
b ,u(x , y) ∶=

∞

∑
�=1

∞

∑
n=0

pb ,u
�,n x� yn .

Proposition 4.6 The generating functions Pb ,u(x , y) satisfy the functional equations

P
b ,u(x , y) = x ⋅ δb=0 + y ⋅

b
∑
s=1
(b

s
) ⋅Pb−s ,u+s(x , y) + y ⋅ ∑

d≥2
X1 , . . . ,Xb
Y1 , . . . ,Yu

d
∏
k=1

P
bk ,uk(x , y)

where δ is the Kronecker delta, where each X i ranges among arbitrary subsets of [d]
while each Yj ranges among strict subsets of [d], and where bk ∶= ∣ {i ∈ [b] ∣ k ∈ X i} ∣ +
∣ { j ∈ [u] ∣ k ∈ Yj} ∣ and uk ∶= b + u − bk for any k ∈ [d]. Hence, Pb ,u(x) is algebraic for
any b, u ∈ N.

Proof A pebble tree of PB ,U
[s ,t] is:

• either a leaf if s = t and B = ∅,
• or a unary node with some pebbles colored by a non-empty subset S ⊆ B (one pebble

of each color in S) and a child in P
B/S ,U∪S
[s ,t] ,

• or a node with some pebbles and d ≥ 2 children in PB1 ,U1
[s1 ,t1]

, . . . ,PBd ,Ud
[sd ,td]

respectively,
for some s = s1 ≤ t1 = s2 ≤ ⋅ ⋅ ⋅ ≤ td = t and B i ⊆ B and U i ⊆ U for all i ∈ [d], such
that ⋂i∈[d]U i = ∅.

The functional equations for Pb ,u(x) are immediate consequences of this struc-
tural decomposition by classical generatingfunctionology [FS09]. The algebraicity
of Pb ,u(x) follows as it belongs to a system of finitely many polynomial equations
(all equations for a given sum b + u). ∎

Example 4.7 When b = u = 0, we recover the functional equation

P
0,0(x , y) = x + y ⋅P0,0(x , y)2

1 −P0,0(x , y)
which yield the classical Schröder generating function

P
0,0(x , y) =

y(x + y −
√

x2 − 2x y − 4x y2 + y2)
2(1 + y)

= x + x2 y + x3(y + 2y2) + x4(y + 5y2 + 5y3) + x5(y + 9y2 + 21y3 + 14y4) + ⋅ ⋅ ⋅
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Figure 16: Bijection ψ sending a triple (T , L, R) of maximal pebble trees of P1,1
2 , P1,1

� and P1,1
r

respectively to a maximal pebble tree of P1,1
�+r .
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The expansions of the generating functionsPb ,u(x , 1) andPb ,u(x , y) for b + u ≤ 2
can be found in Section 4.3. Finally, we observe that the evaluations of Pb ,u(x , y)
at y = 1 and y = −1 have a geometric meaning.

Proposition 4.8 For any b, u ∈ N, the evaluation Pb ,u(x , 1) is the generating function
of the total number of faces of the pebble tree polytope PTPb ,u

� , and

P
b ,u(x ,−1) = x

(−1)b + (−1)u x
.

Proof By Theorem 3.8, pb ,u
�,n is the number of (� + �b + �u − u − 2 − n)-dimensional

faces of the (� + �b + �u − u − 2)-dimensional pebble tree polytope PTPb ,u
� . This

implies that
• ∑n pb ,u

�,n is the total number of faces of PTPb ,u
� ,

• ∑n pb ,u
�,n(−1)n = (−1)�+�b+�u−u−2 by Euler’s formula.

This immediately implies the statement. ∎

4.3 Expansions of generating functions

Below are the expansions of the generating functions Mb ,u(x), Pb ,u(x , 1)
and Pb ,u(x , y) of Definitions 4.1 and 4.2 for all b + u ≤ 2.

b = 0 and u = 0.

M
0,0(x) = x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + ⋅ ⋅ ⋅ (A000108)

P
0,0(x , 1) = x + x2 + 3x3 + 11x4 + 45x5 + 197x6 + 903x7 + ⋅ ⋅ ⋅ (A001003)

P
0,0(x , y) = x + x2 y + x3(y + 2y2) + x4(y + 5y2 + 5y3)

+ x5(y + 9y2 + 21y3 + 14y4) + ⋅ ⋅ ⋅

b = 1 and u = 0.

M
1,0(x) = x + 3x2 + 16x3 + 105x4 + 768x5 + 6006x6 + 49152x7 + ⋅ ⋅ ⋅ (A085614)

P
1,0(x , 1) = x + 7x2 + 81x3 + 1151x4 + 18225x5 + 308519x6 + 5465313x7 + ⋅ ⋅ ⋅

P
1,0(x , y) = x y + x2(y + 3y2 + 3y3) + x3(y + 8y2 + 24y3 + 32y4 + 16y5) + ⋅ ⋅ ⋅

b = 0 and u = 1.

M
0,1(x) = x + 2x2 + 10x3 + 64x4 + 462x5 + 3584x6 + 29172x7 + ⋅ ⋅ ⋅ (A078531)

P
0,1(x , 1) = x + 3x2 + 33x3 + 459x4 + 7185x5 + 120771x6 + 2129169x7 + ⋅ ⋅ ⋅

P
0,1(x , y) = x + x2(y + 2y2) + x3(y + 7y2 + 15y3 + 10y4) + ⋅ ⋅ ⋅

b = 2 and u = 0.

M
2,0(x) = 2x + 24x2 + 496x3 + 12560x4 + 354048x5 + 10665088x6 + ⋅ ⋅ ⋅

P
2,0(x , 1) = 3x + 115x2 + 7431x3 + 587591x4 + 51702219x5 + 4860786491x6 + ⋅ ⋅ ⋅

P
2,0(x , y) = x(y + 2y2) + x2(y + 9y2 + 33y3 + 48y4 + 24y5) + ⋅ ⋅ ⋅
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b = 1 and u = 1.

M
1,1(x) = x + 10x2 + 200x3 + 5000x4 + 140000x5 + 4200000x6 + ⋅ ⋅ ⋅ (A156275)

P
1,1(x , 1) = x + 33x2 + 2061x3 + 160797x4 + 14049369x5 + 1315182201x6 + ⋅ ⋅ ⋅

P
1,1(x , y) = x y + x2(y + 7y2 + 15y3 + 10y4) + ⋅ ⋅ ⋅

b = 0 and u = 2.

M
0,2(x) = x + 6x2 + 112x3 + 2728x4 + 75360x5 + 2242304x6 + 70084864x7 + ⋅ ⋅ ⋅

P
0,2(x , 1) = x + 13x2 + 765x3 + 58297x4 + 5031129x5 + 467426661x6 + ⋅ ⋅ ⋅

P
0,2(x , y) = x + x2(y + 6y2 + 6y3) + ⋅ ⋅ ⋅
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