Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:11:21.018Z Has data issue: false hasContentIssue false

FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF $x^2+y^2=z^3$

Published online by Cambridge University Press:  14 November 2024

TAKAO KOMATSU*
Affiliation:
Faculty of Education, Nagasaki University, Nagasaki 852-8521, Japan
NEHA GUPTA
Affiliation:
Department of Mathematics, School of Natural Sciences, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar, Greater Noida 201314, India e-mail: neha.gupta@snu.edu.in
MANOJ UPRETI
Affiliation:
Department of Mathematics, School of Natural Sciences, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar, Greater Noida 201314, India e-mail: mu506@snu.edu.in
Rights & Permissions [Opens in a new window]

Abstract

We give an explicit formula for the Frobenius number of triples associated with the Diophantine equation $x^2+y^2=z^3$, that is, the largest positive integer that can only be represented in p ways by combining the three integers of the solutions of $x^2+y^2=z^3$. For the equation $x^2+y^2=z^2$, the Frobenius number has already been given. Our approach can be extended to the general equation $x^2+y^2=z^r$ for $r>3$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Diophantine equations are important in mathematics because of their historical significance, their central role in number theory and their applications in cryptography and other fields. Some Diophantine equations have no integral solution or only finitely many integral solutions, whereas some have infinitely many solutions, often characterised as parametrisations. One of the best known Diophantine equations is $x^2+y^2=z^2$ , whose positive integral solutions are known as Pythagorean triples. Some of its generalisations are $x^2+y^2=z^r$ and $x^2-y^2=z^r$ ( $r\ge 2$ ). In this paper, we consider the former one. Diophantine equations are used to characterise certain problems in Diophantine approximations. In [Reference Elsner, Komatsu, Shiokawa, Katsurada, Komatsu and Nakada4, Reference Elsner, Komatsu and Shiokawa5], we computed upper and lower bounds for the approximation of hyperbolic functions at points $1/s$ ( $s=1,2,\ldots $ ) by rationals $x/y$ , such that x, y and z form Pythagorean triples. In [Reference Chaichana, Komatsu and Laohakosol2, Reference Elsner, Komatsu and Shiokawa6], we considered Diophantine approximations $x/y$ to values of hyperbolic functions, where $(x,y,z)$ is the solution of certain Diophantine equations, including $x^2+y^2=z^4$ .

For an integer $k\ge 2$ , consider a set of positive integers $A=\{a_1,\ldots ,a_k\}$ with $\gcd (A)=\gcd (a_1,\ldots ,a_k)=1$ . Finding the number $d(n;A)=d(n;a_1,a_2,\ldots ,a_k)$ of nonnegative integral representations $x_1,x_2,\ldots ,x_k$ to $a_1 x_1+a_2 x_2+\cdots +a_k x_k=n$ for a given positive integer n is an important and interesting problem. This number is often called the denumerant and is equal to the coefficient of $x^n$ in $1/(1-x^{a_1})(1-x^{a_2})\cdots (1-x^{a_k})$ (see [Reference Sylvester21]). For recent studies and references on the denumerant, see [Reference Komatsu10, Reference Liu and Xin17, Reference Liu, Xin and Zhang18].

For a nonnegative integer p, define $S_p$ and $G_p$ by

$$ \begin{align*} S_p(A)=\{n\in\mathbb N_0 \mid d(n;A)>p\} \quad\text{and}\quad G_p(A)=\{n\in\mathbb N_0 \mid d(n;A)\le p\}, \end{align*} $$

so that $S_p\cup G_p=\mathbb N_0$ , which is the set of nonnegative integers. The set $S_p$ is called a p-numerical semigroup, because $S(A)=S_0(A)$ is a numerical semigroup, and $G_p$ is the set of p-gaps. Define $g_p(A)$ and $n_p(A)$ by

$$ \begin{align*} g_p(A)=\max_{n\in G_p(A)}n,\quad n_p(A)=\sum_{n\in G_p(A)}1, \end{align*} $$

respectively; these numbers are called the p-Frobenius number and the p-Sylvester number (or p-genus), respectively. When $p=0$ , $g(A)=g_0(A)$ and $n(A)=n_0(A)$ are the original Frobenius number and Sylvester number (or genus), respectively. More detailed descriptions of p-numerical semigroups and their symmetric properties can be found in [Reference Komatsu and Ying16].

We are interested in explicit formulas for the Frobenius number and related values. For two variables, $A=\{a,b\}$ , it is known that

$$ \begin{align*} g(a,b)=(a-1)(b-1)-1\quad\text{and}\quad n(a,b)=\frac{(a-1)(b-1)}{2} \end{align*} $$

[Reference Sylvester21, Reference Sylvester22]. However, for three or more variables, the Frobenius number cannot be given by any set of closed formulas, which can be reduced to a finite set of polynomials [Reference Curtis3]. For three variables, various algorithms have been devised for finding the Frobenius number. Nevertheless, explicit closed formulas have been found only for some special cases (see [Reference Rosales, Branco and Torrão19] and references therein). Recently, the first author and his co-authors succeeded in giving the p-Frobenius number as a closed-form expression for the triangular number triplet [Reference Komatsu8], for repunits [Reference Komatsu9], Fibonacci triplets [Reference Komatsu and Ying14], Jacobsthal triplets [Reference Komatsu, Laishram and Punyani12, Reference Komatsu and Pita-Ruiz13] and arithmetic triplets [Reference Komatsu and Ying15].

In this paper, we study the numerical semigroup of the triples $(x,y,z)$ , satisfying the Diophantine equation $x^2+y^2=z^r$ ( $r\ge 2$ ). When $r=2$ , the Frobenius number of the Pythagorean triple is given in [Reference Gil, Han, Kim, Koo, Lee, Lee, Nam, Park and Park7]. Unlike the case of $x^2-y^2=z^r$ ( $r\ge 2$ ) in [Reference Yin and Komatsu23], it is more difficult to give a closed explicit formula for the Frobenius number of the triple from $x^2+y^2=z^r$ ( $r\ge 2$ ) for general r. So, in this paper, due to space limitations, we give the results for only $r=3$ and $p=0$ . A detailed discussion, including the cases for $r=4,5$ and for $p>0$ , is given in [Reference Komatsu, Gupta and Upreti11].

2 Preliminaries

We introduce the p-Apéry set in order to obtain the formulas for $g_p(A)$ and $n_p(A)$ . Without loss of generality, we assume that $a_1=\min (A)$ .

Definition 2.1. Let p be a nonnegative integer. For a set of positive integers $A=\{a_1,a_2,\ldots ,a_\kappa \}$ with $\gcd (A)=1$ and $a_1=\min (A)$ , we denote the p-Apéry set of A by

$$ \begin{align*} \mathrm{Ap}_p(A)=\mathrm{Ap}_p(a_1,a_2,\ldots,a_\kappa)=\{m_0^{(p)},m_1^{(p)},\ldots,m_{a_1-1}^{(p)}\}, \end{align*} $$

where each positive integer $m_i^{(p)}\ (0\le i\le a_1-1)$ satisfies the conditions

$$ \begin{align*} \mathrm{(i)}\, m_i^{(p)}\equiv i\pmod{a_1},\quad\mathrm{(ii)}\, m_i^{(p)}\in S_p(A),\quad\mathrm{(iii)}\, m_i^{(p)}-a_1\not\in S_p(A). \end{align*} $$

Note that $m_0^{(0)}$ is defined to be $0$ .

Lemma 2.2. Let k and p be integers with $k\ge 2$ and $p\ge 0$ and assume that $\gcd (a_1,a_2,\ldots ,a_k)=1$ . Then

(2.1) $$ \begin{align} g_p(a_1,a_2,\ldots,a_k)&=\Big(\max_{0\le j\le a_1-1}m_j^{(p)}\Big)-a_1,\quad \end{align} $$
(2.2) $$ \begin{align} n_p(a_1,a_2,\ldots,a_k)&=\frac{1}{a_1}\sum_{j=0}^{a_1-1}m_j^{(p)}-\frac{a_1-1}{2}. \end{align} $$

Remark 2.3. When $p=0$ , the formulas (2.1) and (2.2) reduce to the formulas given by Brauer and Shockley [Reference Brauer and Shockley1] and Selmer [Reference Selmer20], respectively.

3 $x^2+y^2=z^3$

For the solution of the Diophantine equation $x^2+y^2=z^r$ , we obtain the parametrisation

$$ \begin{align*} x&=\sum_{k=0}^{\lfloor r/2\rfloor}(-1)^k\binom{r}{2 k}s^{r-2 k}t^{2 k},\\ y&=\sum_{k=0}^{\lfloor(r-1)/2\rfloor}(-1)^k\binom{r}{2 k+1}s^{r-2 k-1}t^{2 k+1},\\ z&=s^2+t^2, \end{align*} $$

where s and t are of opposite parity with $\gcd (s,t)=1$ .

The case $r=2$ has already been discussed in [Reference Gil, Han, Kim, Koo, Lee, Lee, Nam, Park and Park7], leading to

$$ \begin{align*} g(s^2-t^2,2 s t,s^2+t^2)=(s-1)(s^2-t^2)+(s-1)(2 s t)-(s^2+t^2). \end{align*} $$

Let $r=3$ . The triple of the Diophantine equation $x^2+y^2=z^3$ is parametrised by

$$ \begin{align*} (x,y,z)=(s(s^2-3 t^2),t(3 s^2-t^2),s^2+t^2). \end{align*} $$

For convenience, we put

$$ \begin{align*} \mathbf x:=s(s^2-3 t^2),\quad \mathbf y:=t(3 s^2-t^2),\quad \mathbf z:=s^2+t^2. \end{align*} $$

Since $\mathbf x,\mathbf y,\mathbf z>0$ and $\gcd (\mathbf x,\mathbf y,\mathbf z)=1$ , we see that $s>\sqrt {3}t$ , $\gcd (s,t)=1$ and $s\not \equiv t\pmod {2}$ .

When $\mathbf x>\mathbf z$ , the Frobenius number of this triple is given in the following theorem.

Theorem 3.1. Suppose that $\mathbf x>\mathbf z$ . Then

$$ \begin{align*} &g(s(s^2-3 t^2),t(3 s^2-t^2),s^2+t^2)\\&\quad=\begin{cases} &(s-1)s(s^2-3 t^2)+(s-1)t(3 s^2-t^2)-(s^2+t^2)\\ &\qquad\qquad\qquad\text{if } s>(1+\sqrt{2})t,\\ &(2 s+t-1)s(s^2-3 t^2)+(t-1)t(3 s^2-t^2)-(s^2+t^2)\\ &\qquad\qquad\qquad\text{if } 2 t<s<(1+\sqrt{2})t,\\ &(2 s+t-1)s(s^2-3 t^2)+(s-t-1)t(3 s^2-t^2)-(s^2+t^2)\\ &\qquad\qquad\qquad\text{if } (2+\sqrt{13})t/3<s<2 t,\\ &(5 s+3 t-1)s(s^2-3 t^2)+(2 t-s-1)t(3 s^2-t^2)-(s^2+t^2)\\ &\qquad\qquad\qquad\text{if } C_1 t<s<(2+\sqrt{13})t/3,\\ &(2 s+t-1)s(s^2-3 t^2)+(2 s-3 t-1)t(3 s^2-t^2)-(s^2+t^2)\\ &\qquad\qquad\qquad\text{if } (3+\sqrt{34})t/5<s<C_1 t,\\ &(7 s+4 t-1)s(s^2-3 t^2)+(2 t-s-1)t(3 s^2-t^2)-(s^2+t^2)\\ &\qquad\qquad\qquad\text{if } \sqrt{3}\,t<s<(3+\sqrt{34})t/5. \end{cases} \end{align*} $$

Here, $C_1=1.8139$ … is the positive real root of $3 x^4-7 x^3+6 x^2-3 x-5=0$ .

Remark 3.2. When $\mathbf x<\mathbf z$ , that is, $s\sqrt {(s-1)/(3 s+1)}<t<s/\sqrt {3}$ , there is no uniform pattern for the Frobenius number. We need a separate discussion for each case. See [Reference Komatsu, Gupta and Upreti11] for details.

3.1 The case where $\sqrt {3}t<s<(2+\sqrt {3})t$

We divide the discussion into five parts corresponding to the intervals in Figure 1.

Figure 1 The five intervals for $s/t$ considered in this section.

If $\sqrt {3}t<s<(2+\sqrt {3})t$ , then $0<\mathbf x<\mathbf y$ . Hence, $\mathbf x<\mathbf z<\mathbf y$ or $\mathbf z<\mathbf x<\mathbf y$ .

First, consider $\mathbf z<\mathbf x<\mathbf y$ . Since $(2 s+t)\mathbf x+(2 t-s)\mathbf y=2(s^2-s t-t^2)\mathbf z$ with $s^2-s t-t^2>(2-\sqrt {3})t^2$ ,

(3.1) $$ \begin{align} (2 s+t)\mathbf x+(2 t-s)\mathbf y\equiv\mathbf z\quad\text{and}\quad (2 s+t)\mathbf x+(2 t-s)\mathbf y>0. \end{align} $$

Case 1: $(1+\sqrt {2})t<s<(2+\sqrt {3})t$ . The elements of the ( $0$ -)Apéry set are shown in Figure 2, where each point $(X,Y)$ corresponds to the expression $X\mathbf x+Y\mathbf y$ and the area of the ( $0$ -)Apéry set is equal to $\mathbf z=s^2+t^2$ .

Figure 2 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $(1+\sqrt {2})t<s<(2+\sqrt {3})t$ .

Since $(1+\sqrt {2})t<s<(2+\sqrt {3})t$ , we see that $(s+t)\mathbf x>(s-t)\mathbf y$ . Since $(s+t)\mathbf x\equiv (s-t)\mathbf y\pmod {\mathbf z }$ and $s\mathbf x\equiv -t\mathbf y\pmod {\mathbf z}$ , the sequence $\{\ell \mathbf x\pmod {\mathbf z}\}_{\ell =0}^{\mathbf z-1}$ is given by

(3.2) $$ \begin{align} &(0,0),(1,0),\ldots,(s+t-1,0),(0,s-t),(1,s-t),\ldots,(s-1,s-t),\notag\\ &(0,s-2 t),(1,s-2 t),\ldots,(s+t-1,s-2 t),\notag\\ &(0,2 s-3 t),(1,2 s-3 t),\ldots,(s-1,2 s-3 t),\notag\\ &(0,2 s-4 t),(1,2 s-4 t),\ldots,(s-1,2 s-4 t),\notag\\ &(0,2 s-5 t),(1,2 s-5 t),\ldots,(s+t-1,2 s-5 t)\notag\\ &(0,3 s-6 t),(1,3 s-6 t),\ldots,(s-1,3 s-6 t),\notag\\ &(0,3 s-7 t),(1,3 s-7 t),\ldots,(s-1,3 s-7 t)\notag\\ &\ldots,(s-1,s t-(s-1)t). \end{align} $$

After $(s-1,s t-(s-1)t)$ , the next point adding $\mathbf x \pmod {\mathbf z }$ is $(0,0)$ . Note that the typical patterns in the sequence (3.2) are shown as follows: if $k_1 s-k_2 t\le t-1$ , then the pattern is

$$ \begin{align*} (0,k_1 s-k_2 t),(1,k_1 s-k_2 t),\ldots,(s+t-1,k_1 s-k_2 t),(0,(k_1+1)s-(k_2+1)t), \end{align*} $$

and if $k_1 s-k_2 t\ge t$ , then it is

$$ \begin{align*} (0,k_1 s-k_2 t),(1,k_1 s-k_2 t),\ldots,(s-1,k_1 s-k_2 t),(0,k_1 s-(k_2+1)t). \end{align*} $$

Since $\gcd (s,t)=1$ , all the points inside the area in Figure 2 appear in the sequence (3.2) just once. Since $\gcd (\mathbf x ,\mathbf z )=1$ , the sequence $\{\ell \mathbf x\pmod {\mathbf z }\}_{\ell =0}^{\mathbf z -1}$ is equivalent to the sequence $\{\ell \pmod {\mathbf z }\}_{\ell =0}^{\mathbf z -1}$ .

Comparing the elements at $(s+t-1,t-1)$ and $(s-1,s-1)$ , taking possible maximal values, we find that the element at $(s-1,s-1)$ is the largest in the Apéry set because

$$ \begin{align*} (s-1)\mathbf x+(s-1)\mathbf y-((s+t-1)\mathbf x+(t-1)\mathbf y)=t(s^2(2 s-3)+(2 s+t)t^2)>0. \end{align*} $$

By (2.1) in Lemma 2.2,

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) &=(s-1)\mathbf x +(s-1)\mathbf y -\mathbf z\\ &=(s-1)(s-t)(s^2+4 s t+t^2)-(s^2+t^2). \end{align*} $$

Case 2: $2 t<s<(\sqrt {2}+1)t$ . Now $(s+t)\mathbf x \equiv (s-t)\mathbf y \pmod {\mathbf z }$ but $(s+t)\mathbf x <(s-t)\mathbf y $ . Nevertheless, by $(2 s+t)\mathbf x-(s-2 t)\mathbf y=2(s^2-s t-t^2)\mathbf z>0$ , we have $(2 s+t)\mathbf x \equiv (s-2 t)\mathbf y \pmod {\mathbf z }$ and $(2 s+t)\mathbf x>(s-2 t)\mathbf y$ . For example, $(s,t)=(9,4)$ satisfies this condition, so $(x,y,z)=(297,908,97)$ . Similarly, all the elements of the ( $0$ -)Apéry set are given in Figure 3.

Figure 3 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $2 t<s<(\sqrt {2}+1)t$ .

Compare the elements at $(2 s+t-1,t-1)$ and $(s-1,s-t-1)$ , which take possible maximal values. Since the real roots of $-x^4+2 x^3-3 x^2+2 x+2=0$ are $-0.4909$ and $1.4909$ , together with $s>2 t$ , we see that

$$ \begin{align*} (s-1)\mathbf x+(s-t-1)\mathbf y-((2 s+t-1)\mathbf x+(t-1)\mathbf y)=-s^4+2 s^3 t 3 s^2 t^2+2 s t^3+2 t^4<0, \end{align*} $$

and we find that the element at $(2 s+t-1,t-1)$ is the largest in the Apéry set. By (2.1) in Lemma 2.2,

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) =(2 s+t-1)\mathbf x +(t-1)\mathbf y -\mathbf z. \end{align*} $$

Case 3: $(2+\sqrt {13})t/3<s<2 t$ . For example, $(s,t)=(27,14)$ satisfies this condition, so $(x,y,z)=(3807,27874,925)$ .

By $(2+\sqrt {13})t/3<s$ , we have $(3 s+2 t)\mathbf x-(2 s-3 t)\mathbf y=(3 s^2-4 s t-3 t^2)\mathbf z>0$ . So, $(3 s+2 t)\mathbf x \equiv (2 s-3 t)\mathbf y \pmod {\mathbf z }$ and $(3 s+2 t)\mathbf x>(2 s-3 t)\mathbf y$ . Together with (3.1), all the elements of the ( $0$ -)Apéry set are given in Figure 4.

Figure 4 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $(2+\sqrt {13})t/3<s<2 t$ .

Compare the elements at $(3 s+2 t-1,2 t-s-1)$ and $(2 s+t-1,s-t-1)$ , which take the possible maximal values. We find that the element at $(s-1,s-1)$ is the largest in the Apéry set because $(2+\sqrt {13})t/3<s<2 t$ and

$$ \begin{align*} &(2 s+t-1)\mathbf x+(s-t-1)\mathbf y -((3 s+2 t-1)\mathbf x+(2 t-s-1)\mathbf y)\\ &\quad=-(s^4- 5 s^3 t+6 s^2 t^2-s t^3-3 t^4)>0 \end{align*} $$

for $C_2\, t<s<C_3\, t$ . Here, $C_2\approx -0.5268$ and $C_3\approx 3.3968$ are the roots of $x^4- 5 x^3+6 x^2-x-3=0$ . By (2.1) in Lemma 2.2,

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) =(2 s+t-1)\mathbf x +(s-t-1)\mathbf y -\mathbf z. \end{align*} $$

Case 4: $(3+\sqrt {34})t/5<s<(2+\sqrt {13})t/3$ . For example, $(s,t)=(24,13)$ satisfies this condition, so $(x,y,z)=(1656,20267,745)$ .

In this case, $(3 s+2 t)\mathbf x \equiv (2 s-3 t)\mathbf y \pmod {\mathbf z }$ but $(3 s+2 t)\mathbf x <(2 s-3 t)\mathbf y $ . Nevertheless, since $(3+\sqrt {34})t/5<s$ , we have $(5 s+3 t)\mathbf x-(3 s-5 t)\mathbf y=(5 s^2-6 s t-5 t^2)\mathbf z>0$ . So, $(5 s+3 t)\mathbf x \equiv (3 s-5 t)\mathbf y \pmod {\mathbf z }$ and $(5 s+3 t)\mathbf x>(3 s-5 t)\mathbf y$ . Together with (3.1), all the elements of the ( $0$ -)Apéry set are given in Figure 5.

Figure 5 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $(3+\sqrt {34})t/5<s<(2+\sqrt {13})t/3$ .

Comparing the elements at $(5 s+3 t-1,2 t-s-1)$ and $(2 s+t-1,2 s-3 t-1)$ , taking possible maximal values, we find that there are two possibilities. First, consider

$$ \begin{align*} &(2 s+t-1)\mathbf x+(2 s-3 t-1)\mathbf y -((5 s+3 t-1)\mathbf x+(2 t-s-1)\mathbf y)\\ &\quad=-3 s^4+7 s^3 t-6 s^2 t^2+3 s t^3+5 t^4>0, \end{align*} $$

which is equivalent to $C_4\, t<s<C_1 t$ (where $C_4\approx -0.5553$ is also a root of $3 x^4-7 x^3+6 x^2-3 x-5=0$ ). Restricting to the range in this case, if $1.7661\, t\approx (3+\sqrt {34})t/5<s<C_1 t$ , then, by (2.1) in Lemma 2.2,

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) =(2 s+t-1)\mathbf x +(2 s-3 t-1)\mathbf y -\mathbf z. \end{align*} $$

Otherwise, that is, if $C_1 t<s<(2+\sqrt {13})t/3\approx 1.8685\, t$ , then

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) =(5 s+3 t-1)\mathbf x +(2 t-s-1)\mathbf y -\mathbf z. \end{align*} $$

Case 5: $\sqrt {3}t<s<(3+\sqrt {34})t/5$ . For example, $(s,t)=(44,25)$ satisfies this condition, so $(x,y,z)=(2684,129575,2561)$ .

In this case, $(5 s+3 t)\mathbf x \equiv (3 s-5 t)\mathbf y \pmod {\mathbf z }$ but $(5 s+3 t)\mathbf x <(3 s-5 t)\mathbf y $ . Since $s>\sqrt {3}t\ (\approx 1.732\,t)>(4+\sqrt {65})t/7\ (\approx 1.723\,t)$ , we have $(7 s+4 t)\mathbf x-(4 s-7 t)\mathbf y=(7 s^2 - 8 s t - 7 t^2)\mathbf z>0$ . So, $(7 s+4 t)\mathbf x \equiv (4 s-7 t)\mathbf y \pmod {\mathbf z }$ and $(7 s+4 t)\mathbf x>(4 s-7 t)\mathbf y$ . Together with (3.1), all the elements of the ( $0$ -)Apéry set are given as Figure 6.

Figure 6 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $\sqrt {3}t<s<(3+\sqrt {34})t/5$ .

Comparing the elements at $(7 s+4 t-1,2 t-s-1)$ and $(2 s+t-1,3 s-5 t-1)$ , taking possible maximal values, we find that the element at $(7 s+4 t-1,2 t-s-1)$ is the largest in the Apéry set because, from $\sqrt {3}t<s<(3+\sqrt {34})t/5$ ,

$$ \begin{align*} &(2 s+t-1)\mathbf x+(3 s-5 t-1)\mathbf y -((7 s+4 t-1)\mathbf x+(2 t-s-1)\mathbf y)\\ &\quad=-5 s^4+9 s^3 t-6 s^2 t^2+5 s t^3+7 t^4<0. \end{align*} $$

Note that $-5 x^4+9 x^3-6 x^2+5 x+7=0$ has real roots at $0.5702$ and $1.71692$ and $s>\sqrt {3}t=1.732 t$ . By (2.1) in Lemma 2.2,

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) =(7 s+4 t-1)\mathbf x +(2 t-s-1)\mathbf y -\mathbf z. \end{align*} $$

3.2 The case $s>(2+\sqrt {3})t$

If $s>(2+\sqrt {3})t$ , then $\mathbf z<\mathbf y<\mathbf x$ . The elements of the ( $0$ -)Apéry set are given in Figure 7, where each point $(Y,X)$ corresponds to the expression $Y \mathbf y +X \mathbf x $ and the area of the ( $0$ -)Apéry set is equal to $\mathbf z=s^2+t^2$ .

Figure 7 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $s>(2+\sqrt {3})t$ .

Since $s\mathbf y-t\mathbf x=s t\mathbf z$ , we have $s\mathbf y \equiv t\mathbf x \pmod {\mathbf z }$ and $s\mathbf y>t\mathbf x $ . By using an additional relationship $t\mathbf y+s\mathbf x=(s-t)(s+t)\mathbf z$ , it can be shown that the sequence $\{\ell \mathbf y\pmod {\mathbf z }\}_{\ell =0}^{\mathbf z -1}$ matches the sequence $\{\ell \pmod {\mathbf z }\}_{\ell =0}^{\mathbf z -1}$ (see [Reference Komatsu, Gupta and Upreti11]).

Since $s>(2+\sqrt {3})t$ , we have $(s-1)\mathbf y+(s-1)\mathbf x>(t-1)\mathbf y+(s+t-1)\mathbf x$ . Hence, by (2.1) in Lemma 2.2,

$$ \begin{align*} g(\mathbf x ,\mathbf y ,\mathbf z ) =(s-1)\mathbf y +(s-1)\mathbf x -\mathbf z. \end{align*} $$

4 Final comments

When $\mathbf x<\mathbf z<\mathbf y$ , or $s(s^2-3 t^2)<\mathbf z $ and $s>\sqrt {3}t$ , we need a more precise discussion in each special case (see [Reference Komatsu, Gupta and Upreti11]).

The detail, the proof and the results including the cases $r=4,5$ are recorded in [Reference Komatsu, Gupta and Upreti11], although the structures for $r=4,5$ are not similar to that for $r=3$ . When $p>0$ , the formulas for p-Frobenius numbers and p-Sylvester numbers are obtained, although there are many different situations. See [Reference Komatsu, Gupta and Upreti11] for the details.

When $r\ge 6$ , we can also obtain the Frobenius numbers of the triple for $x^2+y^2=z^r$ . However, we need to discuss the cases for each specific value of r.

Acknowledgment

The authors thank the referee for carefully reading the manuscript and for giving constructive comments.

Footnotes

The first author was supported by JSPS KAKENHI Grant Number 24K22835.

References

Brauer, A. and Shockley, B. M., ‘On a problem of Frobenius’, J. reine angew. Math. 211 (1962), 215220.Google Scholar
Chaichana, T., Komatsu, T. and Laohakosol, V., ‘On convergents of certain values of hyperbolic functions formed from Diophantine equations’, Tokyo J. Math. 36(1) (2013), 239251.CrossRefGoogle Scholar
Curtis, F., ‘On formulas for the Frobenius number of a numerical semigroup’, Math. Scand. 67 (1990), 190192.CrossRefGoogle Scholar
Elsner, C., Komatsu, T. and Shiokawa, I., ‘On convergents formed by Pythagorean numbers’, in: Diophantine Analysis and Related Fields 2006. In honor of Iekata Shiokawa. Proceedings of the Conference, Keio University, Yokohama, Japan, March 7–10, 2006, Department of Mathematics, Seminar on Mathematical Sciences, 35 (eds. Katsurada, M., Komatsu, T. and Nakada, H.) (Keio University, Yokohama, 2006), 5976.Google Scholar
Elsner, C., Komatsu, T. and Shiokawa, I., ‘Approximation of values of hypergeometric functions by restricted rationals’, J. Théor. Nombres Bordeaux 19(2) (2007), 393404.CrossRefGoogle Scholar
Elsner, C., Komatsu, T. and Shiokawa, I., ‘On convergents formed from Diophantine equations’, Glas. Mat. Ser. III 44(2) (2009), 267284.CrossRefGoogle Scholar
Gil, B. K., Han, J.-W., Kim, T. H., Koo, R. H., Lee, B. W., Lee, J., Nam, K. S., Park, H. W. and Park, P.-S., ‘Frobenius numbers of Pythagorean triples’, Int. J. Number Theory 11(2) (2015), 613619.CrossRefGoogle Scholar
Komatsu, T., ‘The Frobenius number for sequences of triangular numbers associated with number of solutions’, Ann. Comb. 26 (2022), 757779.CrossRefGoogle Scholar
Komatsu, T., ‘The Frobenius number associated with the number of representations for sequences of repunits’, C. R. Math. Acad. Sci. Paris 361 (2023), 7389.CrossRefGoogle Scholar
Komatsu, T., ‘On the determination of $p$ -Frobenius and related numbers using the $p$ -Apéry set’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 118 (2024), Article no. 58, 17 pages.Google Scholar
Komatsu, T., Gupta, N. and Upreti, M., ‘Frobenius numbers associated with Diophantine triples of ${x}^2+{y}^2={z}^r$ ’ (extended version), Preprint, 2024, arXiv:2403.07534.Google Scholar
Komatsu, T., Laishram, S. and Punyani, P., ‘ $p$ -numerical semigroups of generalized Fibonacci triples’, Symmetry 15(4) (2023), Article no. 852, 13 pages.CrossRefGoogle Scholar
Komatsu, T. and Pita-Ruiz, C., ‘The Frobenius number for Jacobsthal triples associated with number of solutions’, Axioms 12(2) (2023), Article no. 98, 18 pages.CrossRefGoogle Scholar
Komatsu, T. and Ying, H., ‘The $p$ -Frobenius and $p$ -Sylvester numbers for Fibonacci and Lucas triplets’, Math. Biosci. Eng. 20(2) (2023), 34553481.CrossRefGoogle Scholar
Komatsu, T. and Ying, H., ‘The $p$ -numerical semigroup of the triple of arithmetic progressions’, Symmetry 15(7) (2023), Article no. 1328, 17 pages.CrossRefGoogle Scholar
Komatsu, T. and Ying, H., ‘ $p$ -numerical semigroups with $p$ -symmetric properties’, J. Algebra Appl. 23(13) (2024), Article no. 2450216.Google Scholar
Liu, F. and Xin, G., ‘A fast algorithm for denumerants with three variables’, Preprint, 2024, arXiv:2406.18955.CrossRefGoogle Scholar
Liu, F., Xin, G. and Zhang, C., ‘Three simple reduction formulas for the denumerant functions’, Ramanujan J. 65 (2024), 15671577.CrossRefGoogle Scholar
Rosales, J. C., Branco, M. B. and Torrão, D., ‘The Frobenius problem for Mersenne numerical semigroups’, Math. Z. 286 (2017), 741749.CrossRefGoogle Scholar
Selmer, E. S., ‘On the linear diophantine problem of Frobenius’, J. reine angew. Math. 293/294 (1977), 117.Google Scholar
Sylvester, J. J., ‘On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order’, Amer. J. Math. 5 (1882), 119136.CrossRefGoogle Scholar
Sylvester, J. J., ‘Mathematical questions with their solutions’, Educational Times 41 (1884), 21.Google Scholar
Yin, R. and Komatsu, T., ‘Frobenius numbers associated with Diophantine triples of ${x}^2-{y}^2={z}^r$ ’, Symmetry 16(7) (2024), Article no. 855, 16 pages.CrossRefGoogle Scholar
Figure 0

Figure 1 The five intervals for $s/t$ considered in this section.

Figure 1

Figure 2 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $(1+\sqrt {2})t.

Figure 2

Figure 3 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $2 t.

Figure 3

Figure 4 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $(2+\sqrt {13})t/3.

Figure 4

Figure 5 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $(3+\sqrt {34})t/5.

Figure 5

Figure 6 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $\sqrt {3}t.

Figure 6

Figure 7 $\mathrm {Ap}_0(\mathbf x ,\mathbf y ,\mathbf z )$ when $s>(2+\sqrt {3})t$.