We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs $(G_n)$ converging to a limit $L$ and a vertex $r$ of $L$, it is possible to find a sequence of vertices $(r_n)$ such that $L$ rooted at $r$ is the limit of the graphs $G_n$ rooted at $r_n$. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices $r$ of $L$. We offer another perspective on the original problem by considering the size of definable sets to which the root $r$ belongs. We prove that if $r$ is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots $(r_n)$ always exists.
We start by showing how to approximate unitary and bounded self-adjoint operators by operators in finite dimensional spaces. Using ultraproducts we give a precise meaning for the approximation. In this process we see how the spectral measure is obtained as an ultralimit of counting measures that arise naturally from the finite dimensional approximations. Then we see how generalized distributions can be interpreted in the ultraproduct. Finally we study how one can calculate kernels of operators K by calculating them in the finite dimensional approximations and how one needs to interpret Dirac deltas in the ultraproduct in order to get the kernels as propagators $\langle x_{1}|K|x_{0}\rangle $.
Inspired by Adler’s idea on VC minimal theories [1], we introduce VC-minimal complexity. We show that for any $N\in \mathbb {N}^{>0}$, there is $k_N>0$ such that for any finite bipartite graph $(X,Y;E)$ with VC-minimal complexity $< N$, there exist $X'\subseteq X$, $Y'\subseteq Y$ with $|X'|\geq k_N |X|$, $|Y'|\geq k_N |Y|$ such that $X'\times Y' \subseteq E$ or $X'\times Y'\cap E=\emptyset $.
Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.
As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.
Applied to the special case of differential fields and Kolchin’s constrained cohomology, we complete results from [3] by proving that the first constrained cohomology set of a differential algebraic group over a bounded, differentially large, field is countable.
The original Specker–Blatter theorem (1983) was formulated for classes of structures $\mathcal {C}$ of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set $[n]$ is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003).
If the vocabulary allows a constant symbol c, there are n possible interpretations on $[n]$ for c. We say that a constant c is hard-wired if c is always interpreted by the same element $j \in [n]$. In this paper we show:
(i) The Specker–Blatter theorem also holds for CMSOL when hard-wired constants are allowed. The proof method of Specker and Blatter does not work in this case.
(ii) The Specker–Blatter theorem does not hold already for $\mathcal {C}$ with one ternary relation definable in First Order Logic FOL. This was left open since 1983.
Using hard-wired constants allows us to show MC-finiteness of counting functions of various restricted partition functions which were not known to be MC-finite till now. Among them we have the restricted Bell numbers $B_{r,A}$, restricted Stirling numbers of the second kind $S_{r,A}$ or restricted Lah-numbers $L_{r,A}$. Here r is a non-negative integer and A is an ultimately periodic set of non-negative integers.
We investigate the notion of a semi-retraction between two first-order structures (in typically different signatures) that was introduced by the second author as a link between the Ramsey property and generalized indiscernible sequences. We look at semi-retractions through a new lens establishing transfers of the Ramsey property and finite Ramsey degrees under quite general conditions that are optimal as demonstrated by counterexamples. Finally, we compare semi-retractions to the category theoretic notion of a pre-adjunction.
We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group
$\Gamma _{\infty }$
, where
$\Gamma $
denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of
$\Gamma _{\infty }$
. In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
We present a framework for tame geometry on Henselian valued fields, which we call Hensel minimality. In the spirit of o-minimality, which is key to real geometry and several diophantine applications, we develop geometric results and applications for Hensel minimal structures that were previously known only under stronger, less axiomatic assumptions. We show the existence of t-stratifications in Hensel minimal structures and Taylor approximation results that are key to non-Archimedean versions of Pila–Wilkie point counting, Yomdin’s parameterization results and motivic integration. In this first paper, we work in equi-characteristic zero; in the sequel paper, we develop the mixed characteristic case and a diophantine application.
Let R be a discrete valuation domain with field of fractions Q and maximal ideal generated by
$\pi $
. Let
$\Lambda $
be an R-order such that
$Q\Lambda $
is a separable Q-algebra. Maranda showed that there exists
$k\in \mathbb {N}$
such that for all
$\Lambda $
-lattices L and M, if
$L/L\pi ^k\simeq M/M\pi ^k$
, then
$L\simeq M$
. Moreover, if R is complete and L is an indecomposable
$\Lambda $
-lattice, then
$L/L\pi ^k$
is also indecomposable. We extend Maranda’s theorem to the class of R-reduced R-torsion-free pure-injective
$\Lambda $
-modules.
As an application of this extension, we show that if
$\Lambda $
is an order over a Dedekind domain R with field of fractions Q such that
$Q\Lambda $
is separable, then the lattice of open subsets of the R-torsion-free part of the right Ziegler spectrum of
$\Lambda $
is isomorphic to the lattice of open subsets of the R-torsion-free part of the left Ziegler spectrum of
$\Lambda $
.
Furthermore, with k as in Maranda’s theorem, we show that if M is R-torsion-free and
$H(M)$
is the pure-injective hull of M, then
$H(M)/H(M)\pi ^k$
is the pure-injective hull of
$M/M\pi ^k$
. We use this result to give a characterization of R-torsion-free pure-injective
$\Lambda $
-modules and describe the pure-injective hulls of certain R-torsion-free
$\Lambda $
-modules.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving
$N \supseteq M$
such that
$2^{\aleph _0}$
many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable subgroup H of dimension 1 which is not definably compact. In a future paper we will generalize this to non-abelian G.
We present a natural standard translation of inquisitive modal logic
$\mathrm{InqML}$
into first-order logic over the natural two-sorted relational representations of the intended models, which captures the built-in higher-order features of
$\mathrm{InqML}$
. This translation is based on a graded notion of flatness that ties the inherent second-order, team-semantic features of
$\mathrm{InqML}$
over information states to subsets or tuples of bounded size. A natural notion of pseudo-models, which relaxes the non-elementary constraints on the intended models, gives rise to an elementary, purely model-theoretic proof of the compactness property for
$\mathrm{InqML}$
. Moreover, we prove a Hennessy-Milner theorem for
$\mathrm{InqML}$
, which crucially uses
$\omega $
-saturated pseudo-models and the new standard translation. As corollaries we also obtain van Benthem style characterisation theorems.
We show that if $X$ is an $m$-dimensional definable set in $\mathbb {R}_\text {an}^\text{pow}$, the structure of real subanalytic sets with real power maps added, then for any positive integer $r$ there exists a $C^{r}$-parameterization of $X$ consisting of $cr^{m^{3}}$ maps for some constant $c$. Moreover, these maps are real analytic and this bound is uniform for a definable family.
We use the model theoretic notion of coheir to give short proofs of old and new theorems in Ramsey Theory. As an illustration we start from Ramsey’s theorem itself. Then we prove Hindman’s theorem and the Hales–Jewett theorem. Finally, we prove two Ramsey theoretic principles that have among their consequences partition theorems due to Carlson and to Gowers.
We define a fragment of monadic infinitary second-order logic corresponding to an abstract separation property. We use this to define the concept of a separation subclass. We use model theoretic techniques and games to show that separation subclasses whose axiomatisations are recursively enumerable in our second-order fragment can also be recursively axiomatised in their original first-order language. We pin down the expressive power of this formalism with respect to first-order logic, and investigate some questions relating to decidability and computational complexity. As applications of these results, by showing that certain classes can be straightforwardly defined as separation subclasses, we obtain first-order axiomatisability results for these classes. In particular we apply this technique to graph colourings and a class of partial algebras arising from separation logic.
Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states, and characterise inquisitive modal logic as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures.