We compare and contrast GexSi1−x alloys grown on Si (100), (110) and (111) surfaces. The geometry of interfacial misfit dislocations are observed to be different on these three surfaces, as the intersections of available ♣111} glide planes are of different symmetries for the different interfaces. In addition, angular factors resolving the applied and line tension stresses onto misfit dislocations vary over the different surfaces, producing different effective stresses for identical layer thicknesses, compositions and microstructures. Finally, markedly different dislocation microstructures are observed on the different surfaces, as geometrical considerations show that partial dislocations may separately propagate on the (110) and (111) surfaces, in contrast to the (100) surface.