Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:38:05.777Z Has data issue: false hasContentIssue false

Very Thick Coherently Strained GexSi1−x Layers Grown in a Narrow Temperature Window

Published online by Cambridge University Press:  22 February 2011

C. H. Chern
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Department of Electrical Engineering, University of California, Los Angeles, CA 90024
K. L. Wang
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Department of Electrical Engineering, University of California, Los Angeles, CA 90024
G. Bai
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Department of Electrical Engineering, University of California, Los Angeles, CA 90024
M. -A. Nicolet
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Department of Electrical Engineering, University of California, Los Angeles, CA 90024
Get access

Abstract

Strain relaxation of GexSi1−x layers is studied as a function of growth temperature. Extremely thick coherently strained layers whose thicknesses exceed more than fifty times of the critical thicknesses predicted by Matthews and Blakeslee's model were successfully grown by MBE. There exits a narrow temperature window from 310 °C to 350 °C for growing this kind of high quality thick strained layers. Below this temperature window, the layers are poor in quality as indicated from RHEED patterns. Above this window, the strain of the layers relaxes very fast accompanied with a high density of misfit dislocations as the growth temperature increases. Moreover, for samples grown in this temperature window, the strain relaxation shows a dependence of the residual gas pressure, which has never been reported before.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Daembkes, H., Herzog, H. -J., Jorke, H., Kibbel, H., and Kasper, E.. IEEE Trans. Electron. Devices, ED-33, 633, 1986.CrossRefGoogle Scholar
[2] Pearsall, T. P., Bevk, J., Feldman, L. C., Bonar, J. M., Mannarets, J. P., and Ourmazd, A.. Appl. Phys. Lett, 49, 286, 1986.Google Scholar
[3] Patton, G. L., Iyer, S. S., Delage, S. L., Tiwari, S., and Storie, M. C.. IEEE Electron Device Lett, EDL-9, 165, 1988.CrossRefGoogle Scholar
[4] Tatsumi, T., Hirayama, H., and Aizaki, N.. Appl. Phys. Lett, 52, 895, 1988.CrossRefGoogle Scholar
[5] Xu, D., Shen, G., Willander, M., Ni, W., and Hansson, G. V.. Appl. Phys. Lett, 52, 2239, 1988.CrossRefGoogle Scholar
[6] Temkin, H., Bean, J. C., Antreasyan, A., and Leibenguth, R.. Appl. Phys. Lett., 52, 1089, 1988.CrossRefGoogle Scholar
[7] Luryi, S., Pearsall, T. P., Temkin, H., and Bean, J. C.. IEEE Electron Dev. Lett, EDL-7, 104, 1986.CrossRefGoogle Scholar
[8] Pearsall, T. P., Temkin, H., Bean, J. C. and Luryi, S.. IEEE Electron Device Lett, EDL-7, 330, 1986.CrossRefGoogle Scholar
[9] Temkin, H., Antreasyan, A., Olsson, N. A., Pearsall, T. P. and Bean, J. C.. Appl. Phys. Lett, 49, 809, 1986.CrossRefGoogle Scholar
[10] Kasper, E., and Herzog, H. J.. Appl. Phys. Lett, 8, 199, 1975.Google Scholar
[11] Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K.. J. Vac. Sci. Technol, A2, 436, 1984.CrossRefGoogle Scholar
[12] Kohama, Y., Watanabe, Y., and Fukuda, Y.. Jpn. J. Appl. Phys., 26, L1944, 1988.CrossRefGoogle Scholar
[13] Hull, R., Bean, J. C., Werder, D. J., and Leibenguth, R. E.. Appl. Phys. Lett, 52, 1605, 1988.CrossRefGoogle Scholar
[14] Eaglesham, , Kvam, E. P., Maher, D. M., Humphreys, C. J., Green, G. S., Tanner, B. K., and Bean, J. C.. Appl. Phys. Lett, 53, 208, 1988.CrossRefGoogle Scholar
[15] Houghton, D. C., Gibbings, C. J., Tuppen, C. G., Lyons, M. H., and Halliwell, M. A. G.. Appl. Phys. Lett, 56, 460, 1990.CrossRefGoogle Scholar
[16] Croke, E. T., McGill, T. C., Hauenstein, R. J., and Miles, R. H.. Appl. Phys. Lett, 56, 367, 1990.CrossRefGoogle Scholar
[17] Miles, R. H., Chow, P. P., Johnson, D. C., Hauenstein, R. J., Marsh, O. J., Nieh, C. W., Strathman, M. D., and McGill, T. C.. J. Vac. Sci. Technol, B6, 1382, 1988.CrossRefGoogle Scholar
[18] Miles, R. H., McGill, T. C., Chow, P. P., Johnson, D. C., Hauenstein, R. J., Nieh, C. W., and Strathman, M. D.. Appl. Phys. Lett, 52, 916, 1988.CrossRefGoogle Scholar