Cu(In, Ga)Se2 (CIGS) layers were grown with different vacuum evaporation recipes and the effects of sodium on the grain growth were investigated by scanning electron microscopy. A reduced grain size mainly in the lower part of films grown with the 3-stage process was observed when Na was available during growth. The growth kinetics were found to be influenced during the second stage of the process. In contrast, no clear change in grain size could be observed for CIGS layers grown with constant evaporation rates, with a bi-layer and with an ’extreme’ bi-layer process. A mechanism for the action of Na is proposed, which is based on the assumption that Na passivates CIGS grain boundaries and that this results in a surfactant effect. The mechanism explains the different influences of Na on CIGS growth for different evaporation recipes, the occurrence of reduced grain size in the 3-stage process and the surface smoothing effect observed mainly for CIGS grown with the bi-layer process.
In-diffusion of Na after CIGS growth is shown to be an alternative Na incorporation method that does not reduce the CIGS grain size. A conversion efficiency improvement from 10.4% to 14.2% was achieved due to the post-deposition treatment on CIGS absorbers grown without Na at a maximum substrate temperature of 450°C.