Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T20:56:28.622Z Has data issue: false hasContentIssue false

New Junction Capacitance Methods for the Study of Defect Distributions and Carrier Properties in the Copper Indium Diselenide Alloys

Published online by Cambridge University Press:  01 February 2011

J. David Cohen
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.
Jennifer T. Heath
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.
William N. Shafarman
Affiliation:
Institute for Energy Conversion, University of Delaware, Newark, DE 19716, U.S.A.
Get access

Abstract

We have recently been successful utilizing two methods which are new to the study of CIGS thin film samples: drive-level capacitance profiling, and transient photocapacitance spectroscopy. In this paper we review several of the key results that we have obtained by applying these methods to the study of the CIGS alloys over the past 2 years. This has resulted not only in new information concerning the deep defects and their spatial distributions in these materials, but also to more accurate determinations of free carrier densities, and of minority carrier trapping dynamics within the junction region. Light-induced metastable changes in the deep defect properties of these alloys are also documented through the use of these techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M., Egaas, B., Ramanathan, K., et. al., Prog. Photovolt:Res. Appl. 7, 311 (1999).Google Scholar
2. Walter, T., Herberholz, R., Müller, C., and Schock, H.W., J. Appl. Phys. 80, 4411 (1996).Google Scholar
3. Herberholtz, R., Igalson, M., and Schock, H.W., J. Appl. Phys. 83, 318 (1998).Google Scholar
4. Rau, U., Braunger, D., Herberholz, R., Schock, H.W., Guillemoles, J.-F., Kronik, L., and Cahen, D., J. Appl. Phys. 86, 497 (1999).Google Scholar
5. Turcu, M., Kötschau, I.M., and Rau, U., J. Appl. Phys. 91, 1391 (2002).Google Scholar
6. Igalson, M. and Schock, H.W., J. Appl. Phys. 80, 5765 (1996).Google Scholar
7. AbuShama, J., Johnston, S., Ahrenkiel, R., and Noufi, R., Proc. of the 29th IEEE Photovoltaic Specialists Conference - 2002, in press.Google Scholar
8. Heath, J.T., Cohen, J.D., Shafarman, W.N., Liao, D.X., and Rockett, A.A., Appl. Phys. Lett. 80, 40 (2002).Google Scholar
9. Heath, J. T., Cohen, J.D., and Shafarman, W.N., Thin Solid Films, in press.Google Scholar
10. Shafarman, W. N., Klenk, R., McCandless, B. E., J. Appl Phys. 79 (1996) 7324.Google Scholar
11. Shafarman, W. N., Zhu, J., Mat. Res Soc. Symp. Proc. 668 (2001) H2.3. Google Scholar
12. Cody, G.D., Tiedje, T., Abeles, B., Brooks, B., and Goldstein, Y., Phys. Rev. Lett. 47, 1480 (1981).Google Scholar
13. Wasim, S.M., Rincon, C., Marin, G., Bocaranda, P., Hernandez, E., Bonalde, I., and Medina, E., Phys. Rev. B64, 195101 (2001).Google Scholar
14. Amer, N.M. and Jackson, W.B., in Hydrogenated Amorphous Silicon, vol. 21B of Semiconductors and Semimetals, ed. by Pankove, J. (Academic Press, New York, 1984), p. 83.Google Scholar
15. Stika, O. and Triska, A., Solar Energy Materials 8, 411 (1983).Google Scholar
16. Gelatos, A.V., Cohen, J.D., Harbison, J.P., Appl. Phys. Lett. 49, 722 (1986).Google Scholar
17. Gelatos, A.V., Mahavadi, K.K., Cohen, J.D., and Harbison, J.P., Appl. Phys. Lett. 53, 403 (1988).Google Scholar
18. Wei, S.H., Zhang, S.B., and Zunger, A., Appl. Phys. Lett. 72, 3199 (1998).Google Scholar
19. Heath, J. T., Cohen, J. D., and Shafarman, W. N., in Proc. of the 29th IEEE Photovoltaic Specialists Conference - 2002, 204.4 (2002).Google Scholar
20. Michelson, C. E., Gelatos, A. V., Cohen, J. D., Appl. Phys. Lett. 47, 412 (1985).Google Scholar
21. Cohen, J.D. and Lang, D.V., Phys. Rev. B25, 5321 (1982).Google Scholar
22. Ruberto, M.N. and Rothwarf, A., J. Appl. Phys. 61, 4662 (1987).Google Scholar
23. Kushia, K., Tachiyuki, M., Kase, T., Sugiyama, I., Nagoya, Y., Okumura, D., Sato, M., Yamase, O., Takeshita, H., Sol. En.Mat.Sol. Cells 49, 277 (1997).Google Scholar
24. Schmitt, M., Rau, U., and Parisi, J., Phys. Rev. B61, 16052 (2000).Google Scholar
25. Meyer, Th., Engelhardt, F., Parisi, J., and Rau, U., J. Appl. Phys. 91, 5093 (2002).Google Scholar
26.These IV curves were taken by scanning in the direction of increasing dc voltage. A slight hysteresis was observed depending upon the scan direction; however, this was insignificant compared to the changes in these curves produced by the light exposure.Google Scholar
27. Rau, U., Weinert, K., Nguyet, Q., Mamor, M., Hanna, G., Jasenek, A., and Schock, H.W., Mat. Res. Symp. Proc. 668, H9.1 (2001).Google Scholar