No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We present data showing the potential adverse effects on photovoltaic device performance of all traps in InGaAsN. Deep-level transient spectroscopy measurements were performed on InGaAsN samples grown by both metal-organic chemical vapor deposition and RF plasma-assisted molecular-beam epitaxy. For each growth technique, we studied samples with varying nitrogen composition ranging from 0% to 2.2%. A deep hole trap with activation energy ranging between 0.5 and 0.8 eV is observed in all samples. These data clearly obey the Meyer-Neldel rule, which states that all traps have the same emission rate at the isokinetic temperature. A fit of our trap data gives an isokinetic temperature of 350 K. We find that the emission time for all deep hole traps is on the order of milliseconds at room temperature. This means that both deep and shallow traps emit slowly at the operating temperature of solar cells—thus, the traps can be recombination centers.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.