Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:27:35.115Z Has data issue: false hasContentIssue false

Evidence of the Meyer-Neldel Rule in InGaAsN Alloys: Consequences for Photovoltaic Materials

Published online by Cambridge University Press:  01 February 2011

Steven W. Johnston
Affiliation:
National Renewable Energy Laboratory Golden, CO80401, U.S.A.
Richard S. Crandall
Affiliation:
National Renewable Energy Laboratory Golden, CO80401, U.S.A.
Get access

Abstract

We present data showing the potential adverse effects on photovoltaic device performance of all traps in InGaAsN. Deep-level transient spectroscopy measurements were performed on InGaAsN samples grown by both metal-organic chemical vapor deposition and RF plasma-assisted molecular-beam epitaxy. For each growth technique, we studied samples with varying nitrogen composition ranging from 0% to 2.2%. A deep hole trap with activation energy ranging between 0.5 and 0.8 eV is observed in all samples. These data clearly obey the Meyer-Neldel rule, which states that all traps have the same emission rate at the isokinetic temperature. A fit of our trap data gives an isokinetic temperature of 350 K. We find that the emission time for all deep hole traps is on the order of milliseconds at room temperature. This means that both deep and shallow traps emit slowly at the operating temperature of solar cells—thus, the traps can be recombination centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. 31, 853 (1992).Google Scholar
2 Bi, W. G. and Tu, C. W., Appl. Phys. Lett. 70, 1608 (1997).Google Scholar
3 Buyanova, I. A., Chen, W. M., Pozina, G., Monemar, B., Xin, H. P., and Tu, C. W., Phys. Stat. Sol. (b) 216, 125 (1999).Google Scholar
4 Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys. 35, 1273 (1996).Google Scholar
5 Geisz, J. F., Friedman, D. J., Olson, J.M., Kurtz, S. R., and Keyes, B.M., J. Cryst. Growth 195 (1-4), 401 (1998).Google Scholar
6 Kurtz, S. R., Myers, D., and Olson, J. M., presented at the 26th IEEE Photovoltaic Specialists Conference, Anaheim, CA, 1997 (unpublished).Google Scholar
7 Jones, E. D., Allerman, A. A., Klem, J.F., Kurtz, S.R., Modine, N.R., Friedman, D. J., Geisz, J. F., Shan, W., Walukiewicz, W., and Tu, C., Electrochemical Society International Symposium, 1999.Google Scholar
8 Krispin, P., Spruytte, S. G., Harris, J. S., and Ploog, K. H., Physica B 308, 870 (2001).Google Scholar
9 Krispin, P., Spruytte, S. G., Harris, J. S., and Ploog, K. H., J. Appl. Phys. 89, 6294 (2001).Google Scholar
10 Chen, K. M., Jia, Y. Q., Chen, Y., Li, A. P., Jin, S. X., and Liu, H. F., J. Appl.Phys. 78, 4261 (1995).Google Scholar
11 Kwon, D., Kaplar, R. J., Ringel, S. A., Allerman, A. A., Kurtz, S. R., and Jones, E. D., Appl. Phys. Lett. 74, 2830 (1999).Google Scholar
12 Kaplar, R. J., Kwon, D., Ringel, S. A., Allerman, A. A., Kurtz, S. R., Jones, E. D., and Sieg, R. M., Solar Energ. Mater. Solar Cells 69, 85 (2001).Google Scholar
13 Kaplar, R. J., Ringel, S. A., Kurtz, S. R., Klem, J. F., and Allerman, A. A., Appl. Phys. Lett. 80, 4777 (2002).Google Scholar
14 Johnston, S. W., presented at the IEEE PVSC, New Orleans, LA, 2002 (unpublished).Google Scholar
15 Friedman, D. J., Geisz, J. F., Kurtz, S. R., and Olson, J. M., 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (1998).Google Scholar
16 Ptak, A. J., Friedman, D. J., and Johnston, S. W., MBE-XII, September 15-20, 2002, San Francisco, CA, pp. 291292.Google Scholar
17 Blood, P. and Orton, J. W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States. (Academic Press, 1992), pp. 343345 and pp. 607-612.Google Scholar
18Sula Technologies, PO Box 963, Ashland, OR 97520, USA.Google Scholar
19 Lang, D. V., J. Appl. Phys. 45 (7), 3023 (1974).Google Scholar
20 Meyer, W. and Neldel, H., Z. Tech. Phys. 12, 588 (1937).Google Scholar
21 Keyes, R. W., J. Chem. Phys. 29, 467 (1958).Google Scholar
22 Yelon, A., Movaghar, B., and Branz, H. M., Phys. Rev. B 46, 12244 (1992).Google Scholar
23 Yelon, A. and Movaghar, B., Phys. Rev. Lett. 65, 618 (1990).Google Scholar
24 Peacock-Lopez, E. and Suhl, H., Phys. Rev. B 26, 3774 (1982).Google Scholar
25 Crandall, R. S., presented at the 2003 MRS Spring Meeting, San Francisco, CA, (Mater. Res. Soc. Proc., Pittsburgh, PA, 2003).Google Scholar
26 Engstrom, O. and Alm, A., Solid-State Electron. 21, 1571 (1978).Google Scholar
27 Schroeder, D. K., Semiconductor Material and Device Characterization, 2nd ed. (John Wiley & Sons, Inc., New York, NY, 1998), p. 280.Google Scholar
28 Narasimhan, K. L. and Arora, B. M., Solid State Commun. 55, 615 (1985).Google Scholar
29 Thurzo, I. and Ivanco, J., Applied Surface Science 108 (1), 187 (1997).Google Scholar
30 Rose, A., Concepts in Photoconductivity and Allied Problems, (Robert I. Krieger Publishing Co., Inc., New York, 1978), pp. 126127.Google Scholar