Lithium (Li)-ion battery cathode materials are typically coated to improve cycling performance, using aqueous-based coating techniques that require filtering, drying, and even sintering of the final product. Here, spherical LiNi0.6Mn0.2Co0.2O2 particles were coated with nano-Al2O3 using the dry mechanofusion method. This method produced a durable, non-porous Al2O3 coating that is retained during slurry making. Mechanofusion coatings significantly improved Li-ion battery cathode cycling at high voltages, enabling high energy densities, while offering inexpensive, scalable, and environmentally friendly solvent-free synthesis. This opens up new possibilities, since, not being limited by synthesis chemistry, mechanofusion can in principle be used to apply any coating material.