Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T23:22:10.464Z Has data issue: false hasContentIssue false

Loading and release of a model high-molecular-weight protein from temperature-sensitive micro-structured hydrogels

Published online by Cambridge University Press:  28 June 2019

Kenia Palomino
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque industrial Internacional, C.P. 22427 Tijuana B.C., Mexico
Héctor Magaña
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque industrial Internacional, C.P. 22427 Tijuana B.C., Mexico
Samuel G. Meléndez-López
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque industrial Internacional, C.P. 22427 Tijuana B.C., Mexico
José M. Cornejo-Bravo*
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque industrial Internacional, C.P. 22427 Tijuana B.C., Mexico
Aracely Serrano-Medina
Affiliation:
Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque industrial Internacional, C.P. 22427 Tijuana B.C., Mexico
Manuel Alatorre-Meda
Affiliation:
Cátedras CONACyT-Tecnológico Nacional de México/I. T. Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana B.C., Mexico
Eustolia Rodríguez-Velázquez
Affiliation:
Facultad de Odontología Campus Tijuana, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque industrial Internacional, 22390 Tijuana B.C., Mexico Tecnológico Nacional de México/I. T. Tijuana, Centro de Graduados e Investigación en Química − Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana B.C., Mexico
Ignacio Rivero
Affiliation:
Tecnológico Nacional de México/I. T. Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana B.C., Mexico
*
Address all correspondence to J.M. Cornejo-Bravo at jmcornejo@uabc.edu.mx
Get access

Abstract

The authors prepared a micro-structured, thermosensitive hydrogel with N-isopropylacrylamide microgels with a lower critical solution temperature (LCST) of 32 °C dispersed on a matrix of N-isopropylacrylamide-co-dimethylacrylamide with an LCST at 40 °C. Incubation of the hydrogel at 33 °C in a solution of fluorescein-albumin induced loading of the protein. The protein was not loaded at a temperature below the LCST of the microgels (4 °C), suggesting that the shrinkage of the microgels followed by the formation of micropores within the hydrogel matrix is a prerequisite for protein loading. A sustained and complete release of the loaded protein was obtained at 37 °C.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zaman, R., Islam, R.A., Ibnat, N., Othman, I., Zaini, A., Lee, C.Y., and Chowdhury, E.H.: Current strategies in extending half-lives of therapeutic proteins. J. Control. Release 301, 179 (2019).Google Scholar
2.Deb, P.K., Al-Attraqchi, O., Chandrasekaran, B., and Paradkar, A.: Basic Fundamentals of Drug Delivery. Advances in Pharmaceutical Product Development and Research. Chapter 16 - Protein/Peptide Drug Delivery Systems: Practical Considerations in Pharmaceutical Product Development (Academic Press, Boston, 2019), pp. 651. https://doi.org/10.1016/B978-0-12-817909-3.00016-9.Google Scholar
3.Vermonden, T., Censi, R., and Hennink, W.E.: Hydrogels for protein delivery. Chem. Rev. 112, 2853 (2012).Google Scholar
4.Yu, M., Wu, J., Shi, J., and Farokhzad, O.C.: Nanotechnology for protein delivery: overview and perspectives. J. Control. Release 240, 24 (2016).Google Scholar
5.Lu, Y., Sun, W., and Gu, Z.: Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release 194, 1 (2014).Google Scholar
6.Sharpe, L.A., Daily, A.M., Horava, S.D., and Peppas, N.A.: Therapeutic applications of hydrogels in oral drug delivery. Expert Opin. Drug Deliv. 11, 901 (2014).Google Scholar
7.Li, J. and Mooney, D.J.: Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).Google Scholar
8.Vashist, A., Vashist, A., Gupta, Y.K., and Ahmad, S.: Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B 2, 147 (2014).Google Scholar
9.Taylor, L.D. and Cerankowski, L.D.: Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions – a study of lower consolute behavior. J. Polym. Sci. Polym. Chem. Ed. 13, 2551 (1975).Google Scholar
10.Wu, J.Y., Liu, S.Q., Heng, P.W.S., and Yang, Y.Y.: Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J. Control. Release 102, 361 (2005).Google Scholar
11.Tanaka, T. and Fillmore, D.J.: Kinetics of swelling of gels. J. Chem. Phys. 70, 1214 (1979).Google Scholar
12.Museh, J., Schneider, S., Lindner, P., and Richtering, W.: Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix. J. Phys. Chem. B 112, 6309 (2008).Google Scholar
13.Palomino, K., Suarez-Meraz, K.A., Serrano-Medina, A., Olivas, A., Samano, E.C., and Cornejo-Bravo, J.M.: Microstructured poly(N-isopropylacrylamide) hydrogels with fast temperature response for pulsatile drug delivery. J. Polym. Res 22(199), 19 (2015). https://doi.org/10.1007/s10965-015-0841-0.Google Scholar
14.Palomino, K., Cornejo-Bravo, J.M., Magaña, H., and Serrano-Medina, A.: Microstructured hydrogels with modulated transition temperature for positive control release. Dig. J. Nanomater. Biostruct. 13, 141 (2018).Google Scholar
15.Obeso-Vera, C., Cornejo-Bravo, J.M., Serrano-Medina, A., and Licea-Claverie, A.: Effect of crosslinkers on size and temperature sensitivity of poly(N-isopropylacrylamide) microgels. Polym. Bull 70, 653 (2013).Google Scholar
16.Dash, S., Murthy, P.N., Nath, L., and Chowdhury, P.: Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 67, 217 (2010).Google Scholar
17.Koshy, S.T., Zhang, D.K.Y., Grolman, J.M., Stafford, A.G., and Mooney, D.J.: Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater. 65, 36 (2018).Google Scholar
18.Perez-Luna, V.H. and Gonzalez-Reynoso, O.: Encapsulation of biological agents in hydrogels for therapeutic applications. Gels 4, 61 (2018).Google Scholar
19.Sabaa, M.W., Hanna, D.H., Abu Elella, M.H., and Mohamed, R.R.: Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery. Mater. Sci. Eng. C 94, 1044 (2019).Google Scholar
20.Egbu, R., Brocchini, S., Khaw, P.T., and Awwad, S.: Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur. J. Pharm. Biopharm. 124, 95 (2018).Google Scholar
21.Dutta, S., Samanta, P., and Dhara, D.: Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int. J. Biol. Macromol. 87, 92 (2016).Google Scholar