Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T19:35:53.197Z Has data issue: false hasContentIssue false

Cadmium sulfide/lead sulfide co-sensitized TiO2 enhances photoelectrochemical performance and corrosion resistance of 304 stainless steel

Published online by Cambridge University Press:  19 November 2019

Xinhua Zheng
Affiliation:
Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing102617, China
Subhabrata Das
Affiliation:
Langmuir Center of Colloids and Interfaces, Columbia University in the City of New York, 500 W. 120th St, Mudd, New York, NY10027, USA
Yanhong Gu*
Affiliation:
Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing102617, China
Shikai Liu
Affiliation:
School of Material Science and Engineering, Henan University of Technology, Zhengzhou450000, China
James Borovilas
Affiliation:
Program of Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY10027, USA
Jie Zhao
Affiliation:
Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing102617, China
*
Address all correspondence to Yanhong Gu at guyanhong@bipt.edu.cn, gu_yanhong@163.com
Get access

Abstract

This paper proposes to improve the corrosion resistance of stainless steel using the photocathodic protection (PCP) method with CdS/PbS/titanium dioxide (TiO2) as the photoanode material. Cadmium sulfide (CdS)/lead sulfide (PbS) quantum dot (QD) heterostructure layered on TiO2 enhanced the photoelectrochemical performance and improved the PCP of 304 stainless steel. The photoanode film can protect 304 stainless steel for a period of upto 3 months against corrosion. This work demonstrates that CdS/PbS/TiO2 tandem heterostructure is a promising durable and stable photoanode, which can protect stainless steel in both dark and illuminated conditions.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sun, W.-X., Na, W., Cui, H.-Z., Yuan, L., Wang, X., Jian, T., Jian, L., and Jing, W.: 3D ZnIn2S4 nanosheet/TiO2 nanowire arrays and their efficient photocathodic protection for 304 stainless steel. Appl. Surf. Sci. 434, 25 (2018).CrossRefGoogle Scholar
2.Li, H., Wang, X.-T., Wei, Q.-Y., and Hou, B.: Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light. Nanoscale Res. Lett. 12, 80 (2017).CrossRefGoogle ScholarPubMed
3.Zhou, M.-J., Zeng, Z.-O., and Zhong, L.: Photogenerated cathode protection properties of nano-sized TiO/WO coating. Corros. Sci. 51, 1386 (2009).CrossRefGoogle Scholar
4.Zhang, T., Liu, Y., Liang, J., and Wang, D.: Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl. Surf. Sci. 394, 440 (2017).CrossRefGoogle Scholar
5.Zhang, J., Hu, J., Zhu, Y.-F., Liu, Q., Zhang, H., Du, R.-G., and Lin, C.-J.: Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Corros. Sci. 99, 118 (2015).CrossRefGoogle Scholar
6.Zhu, Y.-F., Xu, L., Hu, J., Zhang, J., Du, R.-G., and Lin, C.-J.: Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochim. Acta 121, 361 (2014).CrossRefGoogle Scholar
7.Liu, X.-H., Hou, P.-M., Zhao, X., Ma, X.-M., and Hou, B.-R.: The polyaniline-modified TiO2 composites in water-based epoxy coating for corrosion protection of Q235 steel. J. Coat. Technol. Res. 16, 71 (2019).CrossRefGoogle Scholar
8.Wang, X.-t, Wei, Q.-y., Zhang, L., Sun, H.-f, Li, H., and Zhang, Q.-X.: CdTe/TiO2 nanocomposite material for photogenerated cathodic protection of 304 stainless steel. Mater. Sci. Eng. B 208, 22 (2016).CrossRefGoogle Scholar
9.Li, H., Wang, X.-T., Zhang, L., and Hou, B.: Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO2 composite. Corros. Sci. 94, 342 (2015).CrossRefGoogle Scholar
10.Hakimizad, A., Raeissi, K., Golozar, M.A., Lu, X., Blawert, C., and Zheludkevich, M.L.: Influence of cathodic duty cycle on the properties of tungsten containing Al2O3/TiO2 PEO nano-composite coatings. Surf. Coat. Technol. 340, 1609 (2018).CrossRefGoogle Scholar
11.Ning, X.-B., Ge, S.-S., Wang, X.-T., Li, H., Li, X.-R., Liu, X.-Q., and Huang, Y.-L.: Preparation and photocathodic protection property of Ag2S-TiO2 composites. J. Alloy. Compd. 719, 2325 (2017).CrossRefGoogle Scholar
12.Pan, Q.-L., Zhao, J.-G., Xing, B.-Y., and Jiang, S.: A hierarchical porous architecture of silicon@TiO2@carbon composite novel anode materials for high performance Li-ion batteries. New J. Chem. 38, 43 (2019).Google Scholar
13.Gurusamy, S., Kulanthaisamy, M.R., Hari, D.G., Ananthi, T., and Boobalan, M.: Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterilas for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens. J. Photochem. Photobiol. B 193, 118 (2019).CrossRefGoogle ScholarPubMed
14.Cao, D.-W., Nasori, N., Wang, Z.-J., Wen, L., Xu, R., Mi, Y., and Lei, Y.: Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. Appl. Catal. B 198, 398 (2016).CrossRefGoogle Scholar
15.Liu, C.-B., Cao, C.-H., Luo, X.-B., and Luo, S.: Ag-bridged Ag2O nanowire network/TiO2 nanotube array pn heterojunction as a highly efficient and stable visible light photocatalyst. J. Hazard. Mater. 285, 319 (2015).CrossRefGoogle ScholarPubMed
16.Lin, Z.-Q., Lai, Y.-K., and Hu, R.-G.: A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals. Electrochim. Acta 55, 8717 (2010).CrossRefGoogle Scholar
17.Bu, Y.-Y. and Chen, Z.-Y.: Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O–C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim. Acta 144, 42 (2014).CrossRefGoogle Scholar
18.Liu, T.-Y., Liu, B., Yang, L.-F., Ma, X., Li, H., Yin, S., Sato, T., Sekino, T., and Wang, Y.: RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B 204, 593 (2017).CrossRefGoogle Scholar
19.Li, J., Lin, C.-J., Li, J.-T., and Lin, Z.-Q.: A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel. Thin Solid Film 519, 5494 (2011).CrossRefGoogle Scholar
20.Zhang, M., Xu, Y.-Y., Gong, Z.-Z., Tao, J., Sun, Z., Lv, J., Chen, X., Jiang, X., He, G., and Wang, P.: Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO2 porous film. J. Alloys Compd 649, 190 (2015).CrossRefGoogle Scholar
21.Etgar, L., Park, J., Barolo, C., Nazeeruddin, M.K., Viscardi, G., and Graetzel, M.: Design and development of novel linker for PbS quantum dots/TiO2 mesoscopic solar cell. ACS Appl. Mater. Interfaces 3, 3264 (2011).CrossRefGoogle Scholar
22.Tatsuma, T., Takeda, S., Saitoh, S., Ohko, Y., and Fujishima, A.: Bactericidal effect of energy storage TiO2–WO3 photocatalysis in dark. Electrochem. Commun. 5, 793 (2003).CrossRefGoogle Scholar
23.Li, Y.-T., Lin, W., Chen, X.-Y., Zhang, R., Xing, S., Chen, Y., Jiao, J., and Mei, L.: Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 1 (2013).Google ScholarPubMed
24.Ding, D., Chen, Y., Lv, P., Yao, H., Mu, Y., Su, S., Zhang, X., Zhou, L., Fu, W.-Y., and Yang, H.: Efficient improvement of photoelectrochemical activity for multiple semiconductor (CdS/PbS/ZnS) co-sensitized TiO2 photoelectrodes by hydrogen treatment. RSC Adv. 5, 6462 (2014).CrossRefGoogle Scholar
25.Dong, E.-L., Wu, Z.-Y., Zhang, W., Lu, C., Zhang, L., Wang, Q., Ma, J., and Wang, J.: Photoelectrochemical performance of PbS/CdS quantum dot cosensitized TiO2 photoelectrodes. 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015 (IEEE, 2016), p. 1274.Google Scholar
26.Guijarro, N., Lanavillarreal, T., Lutz, T., Haque, S.A., and Gómez, R.: Sensitization of TiO2 with PbSe quantum dots by SILAR: how mercaptophenol improves charge separation. J. Phys. Chem. Lett. 3, 3367 (2012).CrossRefGoogle Scholar
27.Parize, R., Cossuet, T., Appert, E., Chaixpluchery, O., Roussel, H., Rapenne, L., and Consonni, V.: Synthesis and properties of ZnO/TiO2/Sb2S3 core-shell nanowire heterostructures using the SILAR technique. Cryst. Eng. Comm. 20, 1039 (2018).CrossRefGoogle Scholar
28.Boonserm, A., Kruehong, C., Seithtanabutara, V., and Artnaseaw, A.: Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution. Appl. Surf. Sci. 419, 933 (2017).CrossRefGoogle Scholar
29.Liu, L., Hou, H.-L., Wang, L., Xu, R., Lei, Y., Shen, S., Yang, D., and Yang, W.: Transparent CdS@TiO2 nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale 9, 1039 (2017).CrossRefGoogle ScholarPubMed
30.Lee, J.-H., Ahn, H.-J., Youn, J.-I., Kim, Y.-J., Suh, S.-J., and Oh, H.-J.: Synthesis and characterization of ZnO/TiO2 photocatalyst decorated with PbS QDs for the degradation of aniline blue solution. Korean J. Met. Mater. 56, 900 (2018).CrossRefGoogle Scholar
31.Das, S., Wu, C.-C., Song, Z.-N., Hou, Y.-C., Koch, R.r, Somasundaran, P., and Priya, S.: Bacteriorhodopsin enhances efficiency of perovskite solar cells. ACS Appl. Mater. Interfaces 11, 30728 (2019).CrossRefGoogle ScholarPubMed
32.Das, S., Asmara, T.C., Patra, A., S, Z.-S., Bista, S., Somasundaran, P., Rusydi, A., Barbiellini, B., and Venkatesan, R.: Optical properties of bacteriorhodopsin–gold bionano interfaces. J. Phys. Chem. C 123, 26516 (2019).CrossRefGoogle Scholar
Supplementary material: File

Zheng et al. supplementary material

Zheng et al. supplementary material

Download Zheng et al. supplementary material(File)
File 158.9 KB