Consider a 
$C^{2}$  family of mixing 
$C^{4}$  piecewise expanding unimodal maps 
$t\in [a,b]\mapsto f_{t}$ , with a critical point 
$c$ , that is transversal to the topological classes of such maps. Given a Lipchitz observable 
$\unicode[STIX]{x1D719}$  consider the function 
$$\begin{eqnarray}{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t)=\int \unicode[STIX]{x1D719}\,d\unicode[STIX]{x1D707}_{t},\end{eqnarray}$$   where 
$\unicode[STIX]{x1D707}_{t}$  is the unique absolutely continuous invariant probability of 
$f_{t}$ . Suppose that 
$\unicode[STIX]{x1D70E}_{t}>0$  for every 
$t\in [a,b]$ , where 
$$\begin{eqnarray}\unicode[STIX]{x1D70E}_{t}^{2}=\unicode[STIX]{x1D70E}_{t}^{2}(\unicode[STIX]{x1D719})=\lim _{n\rightarrow \infty }\int \left(\frac{\mathop{\sum }_{j=0}^{n-1}\left(\unicode[STIX]{x1D719}\circ f_{t}^{j}-\int \unicode[STIX]{x1D719}\,d\unicode[STIX]{x1D707}_{t}\right)}{\sqrt{n}}\right)^{2}\,d\unicode[STIX]{x1D707}_{t}.\end{eqnarray}$$  
We show that 
$$\begin{eqnarray}m\left\{t\in [a,b]:t+h\in [a,b]\text{ and }\frac{1}{\unicode[STIX]{x1D6F9}(t)\sqrt{-\log |h|}}\left(\frac{{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t+h)-{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t)}{h}\right)\leqslant y\right\}\end{eqnarray}$$   converges to 
$$\begin{eqnarray}\frac{1}{\sqrt{2\unicode[STIX]{x1D70B}}}\int _{-\infty }^{y}e^{-\frac{s^{2}}{2}}\,ds,\end{eqnarray}$$   where 
$\unicode[STIX]{x1D6F9}(t)$  is a dynamically defined function and 
$m$  is the Lebesgue measure on 
$[a,b]$ , normalized in such way that 
$m([a,b])=1$ . As a consequence, we show that 
${\mathcal{R}}_{\unicode[STIX]{x1D719}}$  is not a Lipchitz function on any subset of 
$[a,b]$  with positive Lebesgue measure.