To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we prove that a complete Noetherian local domain of mixed characteristic $p>0$ with perfect residue field has an integral extension that is an integrally closed, almost Cohen–Macaulay domain such that the Frobenius map is surjective modulo p. This result is seen as a mixed characteristic analog of the fact that the perfect closure of a complete local domain in positive characteristic is almost Cohen–Macaulay. To this aim, we carry out a detailed study of decompletion of perfectoid rings and establish the Witt-perfect (decompleted) version of André’s perfectoid Abhyankar’s lemma and Riemann’s extension theorem.
For an unramified reductive group, we determine the connected components of affine Deligne–Lusztig varieties in the affine flag variety. Based on work of Hamacher, Kim, and Zhou, this result allows us to verify, in the unramified group case, the He–Rapoport axioms, the almost product structure of Newton strata, and the precise description of isogeny classes predicted by the Langlands–Rapoport conjecture, for the Kisin–Pappas integral models of Shimura varieties of Hodge type with parahoric level structure.
In this paper, we propose a modified Kudla–Rapoport conjecture for the Krämer model of unitary Rapoport–Zink space at a ramified prime, which is a precise identity relating intersection numbers of special cycles to derivatives of Hermitian local density polynomials. We also introduce the notion of special difference cycles, which has surprisingly simple description. Combining this with induction formulas of Hermitian local density polynomials, we prove the modified Kudla–Rapoport conjecture when $n=3$. Our conjecture, combining with known results at inert and infinite primes, implies the arithmetic Siegel–Weil formula for all non-singular coefficients when the level structure of the corresponding unitary Shimura variety is defined by a self-dual lattice.
Let $X_4\subset \mathbb {P}^{n+1}$ be a quartic hypersurface of dimension $n\geq 4$ over an infinite field k. We show that if either $X_4$ contains a linear subspace $\Lambda $ of dimension $h\geq \max \{2,\dim (\Lambda \cap \operatorname {\mathrm {Sing}}(X_4))+2\}$ or has double points along a linear subspace of dimension $h\geq 3$, a smooth k-rational point and is otherwise general, then $X_4$ is unirational over k. This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We also provide a density result for the k-rational points of quartic $3$-folds with a double plane over a number field, and several unirationality results for quintic hypersurfaces over a $C_r$ field.
We develop an effective version of the Chabauty–Kim method which gives explicit upper bounds on the number of $S$-integral points on a hyperbolic curve in terms of dimensions of certain Bloch–Kato Selmer groups. Using this, we give a new ‘motivic’ proof that the number of solutions to the $S$-unit equation is bounded uniformly in terms of $\#S$.
We construct an anticyclotomic Euler system for the Rankin–Selberg convolutions of two modular forms, using p-adic families of generalised Gross–Kudla–Schoen diagonal cycles. As applications of this construction, we prove new results on the Bloch–Kato conjecture in analytic ranks zero and one, and a divisibility towards an Iwasawa main conjecture.
We give a new proof of Faltings's $p$-adic Eichler–Shimura decomposition of the modular curves via Bernstein–Gelfand–Gelfand (BGG) methods and the Hodge–Tate period map. The key property is the relation between the Tate module and the Faltings extension, which was used in the original proof. Then we construct overconvergent Eichler–Shimura maps for the modular curves providing ‘the second half’ of the overconvergent Eichler–Shimura map of Andreatta, Iovita and Stevens. We use higher Coleman theory on the modular curve developed by Boxer and Pilloni to show that the small-slope part of the Eichler–Shimura maps interpolates the classical $p$-adic Eichler–Shimura decompositions. Finally, we prove that overconvergent Eichler–Shimura maps are compatible with Poincaré and Serre pairings.
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.
We study plane curves over finite fields whose tangent lines at smooth $\mathbb {F}_q$-points together cover all the points of $\mathbb {P}^2(\mathbb {F}_q)$.
Let $G$ be a reductive group over an algebraically closed field $k$ of separably good characteristic $p>0$ for $G$. Under these assumptions, a Springer isomorphism $\phi : \mathcal {N}_{\mathrm {red}}(\mathfrak {g}) \rightarrow \mathcal {V}_{\mathrm {red}}(G)$ from the nilpotent scheme of $\mathfrak {g}$ to the unipotent scheme of $G$ always exists and allows one to integrate any $p$-nilpotent element of $\mathfrak {g}$ into a unipotent element of $G$. One should wonder whether such a punctual integration can lead to an integration of restricted $p$-nil $p$-subalgebras of $\mathfrak {g}= \operatorname {Lie}(G)$. We provide a counter-example of the existence of such an integration in general, as well as criteria to integrate some restricted $p$-nil $p$-subalgebras of $\mathfrak {g}$ (that are maximal in a certain sense). This requires the generalisation of the notion of infinitesimal saturation first introduced by Deligne and the extension of one of his theorems on infinitesimally saturated subgroups of $G$ to the previously mentioned framework.
We present a Mordell–Weil sieve that can be used to compute points on certain bielliptic modular curves $X_0(N)$ over fixed quadratic fields. We study $X_0(N)(\mathbb {Q}(\sqrt {d}))$ for $N \in \{ 53,61,65,79,83,89,101,131 \}$ and ${\lvert d \rvert < 100}$.
Let F be a finite extension of ${\mathbb Q}_p$. Let $\Omega$ be the Drinfeld upper half plane, and $\Sigma^1$ the first Drinfeld covering of $\Omega$. We study the affinoid open subset $\Sigma^1_v$ of $\Sigma^1$ above a vertex of the Bruhat–Tits tree for $\text{GL}_2(F)$. Our main result is that $\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$, which we establish by showing that $\text{Pic}({\mathbf Y})[p] = 0$ for ${\mathbf Y}$ the Deligne–Lusztig variety of $\text{SL}_2\!\left({\mathbb F}_q\right)$. One formal consequence is a description of the representation $H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$ of $\text{GL}_2(\mathcal{O}_F)$ as the p-adic completion of $\mathcal{O}\!\left(\Sigma^1_v\right)^\times$.
Romyar Sharifi has constructed a map $\varpi _M$ from the first homology of the modular curve $X_1(M)$ to the K-group $K_2(\operatorname {\mathrm {\mathbf {Z}}}[\zeta _M+\zeta _M^{-1}, \frac {1}{M}]) \otimes \operatorname {\mathrm {\mathbf {Z}}}[1/2]$, where $\zeta _M$ is a primitive Mth root of unity. Sharifi conjectured that $\varpi _M$ is annihilated by a certain Eisenstein ideal. Fukaya and Kato proved this conjecture after tensoring with $\operatorname {\mathrm {\mathbf {Z}}}_p$ for a prime $p\geq 5$ dividing M. More recently, Sharifi and Venkatesh proved the conjecture for Hecke operators away from M. In this note, we prove two main results. First, we give a relation between $\varpi _M$ and $\varpi _{M'}$ when $M' \mid M$. Our method relies on the techniques developed by Sharifi and Venkatesh. We then use this result in combination with results of Fukaya and Kato in order to get the Eisenstein property of $\varpi _M$ for Hecke operators of index dividing M.
We establish a Harder–Narasimhan formalism for modifications of $G$-bundles on the Fargues–Fontaine curve. The semi-stable stratum of the associated stratification of the ${B^+_{{\rm dR}}}$-Grassmannian coincides with the variant of the weakly admissible locus defined by Viehmann, and its classical points agree with those of the basic Newton stratum. When restricted to minuscule affine Schubert cells, the stratification corresponds to the Harder–Narasimhan stratification of Dat, Orlik and Rapoport. We also study basic geometric properties of the strata, and the relation to the Hodge–Newton decomposition.
We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups, symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in our sense) on a stack $\mathcal {X}$, which specializes to the Batyrev–Manin conjecture when $\mathcal {X}$ is a scheme and to Malle’s conjecture when $\mathcal {X}$ is the classifying stack of a finite group.
We prove some $\ell $-independence results on local constancy of étale cohomology of rigid analytic varieties. As a result, we show that a closed subscheme of a proper scheme over an algebraically closed complete non-archimedean field has a small open neighbourhood in the analytic topology such that, for every prime number $\ell $ different from the residue characteristic, the closed subscheme and the open neighbourhood have the same étale cohomology with ${\mathbb Z}/\ell {\mathbb Z}$-coefficients. The existence of such an open neighbourhood for each $\ell $ was proved by Huber. A key ingredient in the proof is a uniform refinement of a theorem of Orgogozo on the compatibility of the nearby cycles over general bases with base change.
Erdős considered the second moment of the gap-counting function of prime divisors in 1946 and proved an upper bound that is not of the right order of magnitude. We prove asymptotics for all moments. Furthermore, we prove a generalisation stating that the gaps between primes p for which there is no $\mathbb{Q}_p$-point on a random variety are Poisson distributed.
We study fundamental properties of analytic K-theory of Tate rings such as homotopy invariance, Bass fundamental theorem, Milnor excision, and descent for admissible coverings.
We prove an analogue of Lang's conjecture on divisible groups for polynomial dynamical systems over number fields. In our setting, the role of the divisible group is taken by the small orbit of a point $\alpha$ where the small orbit by a polynomial $f$ is given by
\begin{align*} \mathcal{S}_\alpha = \{\beta \in \mathbb{C}; f^{\circ n}(\beta) = f^{\circ n}(\alpha) \text{ for some } n \in \mathbb{Z}_{\geq 0}\}. \end{align*}
Our main theorem is a classification of the algebraic relations that hold between infinitely many pairs of points in $\mathcal {S}_\alpha$ when everything is defined over the algebraic numbers and the degree $d$ of $f$ is at least 2. Our proof relies on a careful study of localisations of the dynamical system and follows an entirely different approach than previous proofs in this area. In particular, we introduce transcendence theory and Mahler functions into this field. Our methods also allow us to classify all algebraic relations that hold for infinitely many pairs of points in the grand orbit
\begin{align*} \mathcal{G}_\alpha = \{\beta \in \mathbb{C}; f^{\circ n}(\beta) = f^{\circ m}(\alpha) \text{ for some } n ,m\in \mathbb{Z}_{\geq 0}\} \end{align*}
of $\alpha$ if $|f^{\circ n}(\alpha )|_v \rightarrow \infty$ at a finite place $v$ of good reduction co-prime to $d$.