To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The development of optical elements has seen tremendous advances over the last few decades for a variety of applications, including displays, cameras, and microscopes. Various optical elements have been developed, ranging from refractive elements to diffractive elements. In recent years, metasurfaces have been in the spotlight to develop next-generation optical elements beyond existing refractive or diffractive optics. A metasurface is a two-dimensional metamaterial composed of subwavelength artificial structures and has been studied for the development of optical elements with the major advantage that the properties of light can be freely adjusted by a thin flat structure. Optical lenses using metasurfaces can be hundreds of times thinner than conventional lenses, while at the same time, provide excellent focusing performance. This suggests that they can be applied to mobile and high-performance imaging applications in the future. Here, we discuss developments of optical elements from refractive or diffractive optics to metasurface optics, including basic principles and properties, current issues, and future perspectives.
Dielectrics are electrical insulator materials, polarizable by opposite displacement of positive and negative ionized atoms via electric fields across the material’s thickness. Dielectrics are used in energy-storage capacitors, as key components in modern micro-/nanoelectronics, high-frequency and mobile communication devices, and life-saving microchips and other devices such as defibrillators and pacemakers implantable in humans. A key dielectric parameter is the dielectric constant (k), which largely controls the capacitance in capacitors with nanoscale area and dielectric layer thickness. Extremely high dielectric constants (k ≥1000) were observed in oxides (e.g., La1.8Sr0.12NiO4) with relaxor/ferroelectric materials and in combined semiconducting bulk properties with highly resistive grain boundaries. Giant dielectric constant films have also been demonstrated, based on integrating relatively low-dielectric-constant oxides into nanolaminate structures (e.g., TiOx/Al2O3; TiO2/HfO2) with tailored sublayer thicknesses, interfaces, and oxygen atom distributions. This overview article addresses the science and technology of high-dielectric-constant oxide materials with different compositions and structures.
As plasmonic materials transition from three-dimensional to two-dimensional (2D) form, unique optical and electronic phenomena arise that are unattainable in bulk materials and conventional thin films. Exceptional sensitivity to external perturbations, including electrical biasing and optical excitation as well as quantum effects, are expected to emerge, as has been demonstrated in graphene. Similarly, metallic or plasmonic films with thicknesses down to a few monolayers, called transdimensional materials (TDMs), are predicted to exhibit remarkably strong tunability of their optical response. The unique properties of 2D materials and TDMs have established them as promising platforms for dynamic nanophotonic devices. While novel 2D materials have been widely explored for nanophotonic devices, until recently, there have been minimal studies on the evolution of the optical properties of plasmonic TDMs. In this article, we highlight progress in exploring the thickness-dependent optical response of plasmonic materials as they approach the 2D regime. Experimental and theoretical investigations of the plasmonic properties of 2D materials, such as graphene and tungsten diselenide, TDMs, and plasmonic thin films, are discussed, with a focus on prospects for their utilization in dynamically tunable flat optical devices or metasurfaces.
This article presents a brief review of our case studies of data-driven Integrated Computational Materials Engineering (ICME) for intelligently discovering advanced structural metal materials, including light-weight materials (Ti, Mg, and Al alloys), refractory high-entropy alloys, and superalloys. The basic bonding in terms of topology and electronic structures is recommended to be considered as the building blocks/units constructing the microstructures of advanced materials. It is highlighted that the bonding charge density could not only provide an atomic and electronic insight into the physical nature of chemical bond of materials but also reveal the fundamental strengthening/embrittlement mechanisms and the local phase transformations of planar defects, paving a path in accelerating the development of advanced metal materials via interfacial engineering. Perspectives on the knowledge-based modeling/simulations, machine-learning knowledge base, platform, and next-generation workforce for sustainable ecosystem of ICME are highlighted, thus to call for more duty on the developments of advanced structural metal materials and enhancement of research productivity and collaboration.
The effects of stress-free and stress-assisted pretreatments at a relatively high temperature on the creep properties of [001] and [011] oriented Ni-based single-crystal superalloys are investigated in this article. The results show that the creep life of the pretreated samples is shorter than that of the original samples. The variation of the γ/γ′ morphology during the creep process is characterized by the microstructure period. Based on the interaction between the dislocations in the γ matrix channel and the γ′ phase, the difference in creep properties of the two oriented alloys after pretreatment is analyzed. Combined with the crystal plasticity theory and the number of activated slip systems observed in the experiments, it can be concluded that the two oriented alloys after pretreatment show obvious creep anisotropy and that the creep life increases with the number of activated slip system.
To avoid degradation of silicon anodes in lithium-ion batteries (LIBs), the authors report a new two-dimensional multi-layered Si-intercalated rGO (rGO/Si) anode prepared by direct growth of Si into a porous multi-layered reduced graphene oxide (rGO) film. Direct Si deposition onto the porous rGO film allows the Si layers to be intercalated into the film via in situ replacement of the oxygen groups of the multi-layered graphene oxide (GO) with Si through thermal reduction of the GO film. The porous rGO acts as a cushion against the expansion of the Si layer during lithiation, preventing the Si from being pulverized and producing highly stable LIBs.
The materials chosen to make thermal engines, spacecrafts, or human implants cannot fail in an unpredictable way to guarantee the users' well-being. These applications can benefit from the use of ceramics because of their temperature resistance, corrosion resistance, or hardness. Although parts based on ceramic matrix composites and zirconia are already in use, a more recent ceramic with a structure inspired from seashells provides an attractive combination of ease of processing, high strength, and high toughness. These nacre-like aluminas are made of aligned micron-sized monocrystalline platelets joined together by a mix of mineral secondary phase and nanoparticles. The review's first objective is to provide a picture of what these newly developed bioinspired ceramics are capable of within today's ceramic and nacre-inspired composites landscape. I will also extract from the results the links between process/microstructure/performance to better understand the potential of these materials in terms of toughness and strength increase. Finally, I will present the challenges that are ahead to eventually reproduce the exceptional fracture behavior observed in nacre.
Atomically thin 2D materials exhibit strong intralayer covalent bonding and weak interlayer van der Waals interactions, offering unique high in-plane strength and out-of-plane flexibility. While atom-thick nature of 2D materials may cause uncontrolled intrinsic/extrinsic deformation in multiple length scales, it also provides new opportunities for exploring coupling between heterogeneous deformations and emerging functionalities in controllable and scalable ways for electronic, optical, and optoelectronic applications. In this review, we discuss (i) the mechanical characteristics of 2D materials, (ii) uncontrolled inherent deformation and extrinsic heterogeneity present in 2D materials, (iii) experimental strategies for controlled heterogeneous deformation of 2D materials, (iv) 3D structure-induced novel functionalities via crumple/wrinkle structure or kirigami structures, and (v) heterogeneous strain-induced emerging functionalities in exciton and phase engineering. Overall, heterogeneous deformation offers unique advantages for 2D materials research by enabling spatial tunability of 2D materials' interactions with photons, electrons, and molecules in a programmable and controlled manner.