To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ICDD's Powder Diffraction File™ (PDF®) is a database of inorganic and organic diffraction data used for phase identification and materials characterization by powder diffraction. The PDF has been available for over 75 years and finds application in X-ray, synchrotron, electron, and neutron diffraction analyses. With entries based on powder and single crystal data, the PDF is the only crystallographic database where every entry is editorially reviewed and marked with a quality mark that alerts the user to the reliability/quality of the submitted data. The editorial processes of ICDD's quality management system are unique in that they are ISO 9001:2015 certified. Initially offered as text on paper cards and books, the PDF evolved to a computer-readable database in the 1960s and today is both computer and web accessible. With data mining and phase identification software available in PDF products, and the databases’ compatibility with vendor (third party) software, the 1 000 000+ published PDF entries serve a wide range of disciplines covering academic, industrial, and government laboratories. Details describing the content of database entries are presented to enhance the use of the PDF.
Theoretical calculations and experimental observations show MoTe2 is a type II Weyl semimetal, along with many members of transition metal dichalcogenides family. We have grown highly crystalline large-area MoTe2 thin films on Si/SiO2 substrates by chemical vapor deposition. Very uniform, continuous, and smooth films were obtained as confirmed by scanning electron microscopy and atomic force microscopy analyses. Measurements of the temperature dependence of longitudinal resistivity and current–voltage characteristics at different temperature are discussed. Unsaturated, positive quadratic magnetoresistance of the as-grown thin films has been observed from 10 to 200 K. Hall resistivity measurements confirm the majority charge carriers are hole.
Conventional alloy design based on a single primary element has reached its limits in terms of performance optimization. An alloy design strategy with multi-principal elements has recently been uncovered to overcome this bottleneck. Multicomponent alloys, generally referred to as high-entropy alloys (HEAs), exhibit many promising properties, especially outstanding mechanical performance at cryogenic, ambient, and elevated temperatures. In this article, we focus on precipitation-hardened HEAs, which are potential candidates for next-generation structural materials, especially at high temperatures. The key issues involved include precipitation behaviors, phase stability, and phase control, all of which provide useful guidelines for further development of high-temperature materials with superior performance. In particular, we address the formation of cellular γ′ precipitates at grain boundaries, which is closely related to the embrittlement of HEAs at intermediate temperatures. Critical issues and design strategies in developing HEAs for high-temperature applications are also discussed.
Understanding changes in chemistry, microstructure, and physical properties during synthesis, processing, testing, and even service is vital for materials design and performance. Compared to traditional postmortem material characterization tools, in situ crystallographic characterization can provide considerable data and information on evolution of chemistry, dislocations, twinning, texture, and strains when a material is under external stimuli. Neutrons especially are able to probe material bulk properties and behaviors in extreme environments, thanks to their deep penetrating power and unique sensitivity to differentiate elements from lightweight to transition-metal atoms. In this article, we introduce and describe a diffractometer named VULCAN, which is located at Oak Ridge National Laboratory. This represents a powerful tool to understand materials properties and behaviors under complex environments, in particular, at high temperatures.
Metallic glasses have attractive properties, but since the glassy state is inherently metastable, they are not normally considered for applications at elevated temperatures. Yet, studies have shown that multicomponent and pseudo high-entropy (PHE) compositions can confer useful heat resistance. The formation, thermal stability, and mechanical and chemical properties of multicomponent Fe-(Cr, Mo)- and Zr-based bulk metallic glasses (BMGs) are reviewed to assess their potential as heat-resistant structural materials. The composition Fe43Cr16Mo16C15B10 is castable and fully glassy with rod diameters up to 2.7 mm. Glassy coatings of this material with low porosity, good mechanical properties, and good corrosion resistance can be produced by high-velocity spray coating. The compositions Zr55–65Al7.5–10(TM1,TM2)27.5–35 (TM1 = Fe, Co, Ni, TM2 = Cu, Pd, Ag, Au) yield PHE BMGs, in which a stable cluster-like glassy phase without crystalline precipitates is formed by annealing at temperatures well above the first calorimetric transformation. It is suggested that proliferation of alloy components is an effective method to synthesize metastable metallic materials that retain high strength at elevated temperatures.