To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electron microscopy is uniquely suited for atomic-resolution imaging of heterogeneous and complex materials, where composition, physical, and electronic structure need to be analyzed simultaneously. Historically, the technique has demonstrated optimal performance at room temperature, since practical aspects such as vibration, drift, and contamination limit exploration at extreme temperature regimes. Conversely, quantum materials that exhibit exotic physical properties directly tied to the quantum mechanical nature of electrons are best studied (and often only exist) at extremely low temperatures. As a result, emergent phenomena, such as superconductivity, are typically studied using scanning probe-based techniques that can provide exquisite structural and electronic characterization, but are necessarily limited to surfaces. In this article, we focus not on the various methods that have been used to examine quantum materials at extremely low temperatures, but on what could be accomplished in the field of quantum materials if the power of electron microscopy to provide structural analysis at the atomic scale was extended to extremely low temperatures.
Battery technology has come a long way since September 1899, when Ferdinand Porsche’s electric powered car won its first road race. The “Egger-Lohner electric C.2 Phaeton” carried a Tudor brand lead-acid battery that weighed 500 kg and propelled the 1350-kg vehicle with 3 hp (2.2 kW for 3–5 h) for 80 km.
Microcrystal electron diffraction (MicroED) is a cryo-electron microscopy technique that utilizes three-dimensional nano- and microcrystals for high-resolution structure determination. These extremely small crystals are several orders of magnitude smaller than what is used in conventional x-ray diffraction experiments. MicroED is capable of providing high-quality data from samples that would otherwise be considered useless for diffraction measurements. Since its initial implementation, MicroED has been used in the fields of structural biology, chemistry, and materials science. In this article, we provide an overview of the MicroED methodology as well as examples of how MicroED in cryo-electron microscopy has been used for structure determination of a variety of samples.
New cryogenic characterization techniques for exploring the nanoscale structure and chemistry of intact solid–liquid interfaces have recently been developed. These techniques provide high-resolution information about buried interfaces from large samples or devices that cannot be obtained by other means. These advancements were enabled by the development of instrumentation for cryogenic focused ion beam liftout, which allows intact solid–liquid interfaces to be extracted from large samples and thinned to electron-transparent thicknesses for characterization by cryogenic scanning transmission electron microscopy or atom probe tomography. Future implementation of these techniques will complement current strides in imaging of materials in fluid environments by in situ liquid-phase electron microscopy, providing a more complete understanding of the morphology, surface chemistry, and dynamic processes that occur at solid–liquid interfaces.
Cryogenic transmission electron microscopy is simply transmission electron microscopy conducted on specimens that are cooled in the microscope. The target temperature of the specimen might range from just below ambient temperature to less than 4 K. In general, as the temperature decreases, cost increases, especially below –77°C when liquid He is required. We have two reasons for wanting to cool the specimen—improving stability of the material or observing a material whose properties change at lower temperatures. Both types of study have a long history. The cause of excitement in this field today is that we have a perfect storm of research activity—electron microscopes are almost stable with minimal drift (we can correct what drift there is), we can prepare specimens from the bulk or build them up, we have spherical-aberration-corrected lenses and monochromated beams, we have direct-electron-detector cameras, and computers are becoming powerful enough to handle all the data we produce.
Soft matter has historically been an unlikely candidate for investigation by electron microscopy techniques due to damage by the electron beam as well as inherent instability under a high vacuum environment. Characterization of soft matter has often relied on ensemble-scattering techniques. The recent development of cryogenic transmission electron microscopy (cryo-TEM) provides the soft matter community with an exciting opportunity to probe the structure of soft materials in real space. Cryo-TEM reduces beam damage and allows for characterization in a native, frozen-hydrated state, providing direct visual representation of soft structure. This article reviews cryo-TEM in soft materials characterization and illustrates how it has provided unique insights not possible by traditional ensemble techniques. Soft matter systems that have benefited from the use of cryo-TEM include biological-based “soft” nanoparticles (e.g., viruses and conjugates), synthetic polymers, supramolecular materials as well as the organic–inorganic interface of colloidal nanoparticles. Many challenges remain, such as combining structural and chemical analyses; however, the opportunity for soft matter research to leverage newly developed cryo-TEM techniques continues to excite.
The recent success of electron cryomicroscopy in biology has drawn the attention of the materials science community, which is starting to employ similar techniques for imaging a wide variety of nonbiological specimens. This article reviews the theory and practical implications of radiation damage in electron microscopy, and then considers how electron cryomicroscopy techniques may be applied to other radiation-sensitive specimens of interest to materials scientists. We also discuss aspects of radiation damage that warrant further study as instrumentation technology advances and consider new methods that might be useful in the future.