To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The study introduces a novel dual-reflector antenna featuring a modified sub-reflector design aimed at improving aperture efficiency. A cylindrical-shaped keeper is introduced to enhance the performance of the sub-reflector. The dual-reflector configuration comprises a main parabolic reflector and a modified sub-reflector, with diameters of 16.5 λ and 2.2 λ, respectively, operating at 5.5 GHz. The antenna demonstrates a bandwidth (BW) of approximately 25.4% (4800–6200 MHz). Experimental measurements indicate favorable characteristics, including low cross-polarization levels (<−25 dB), minimal back lobe levels (F/B > 30 dB), high isolation between ports (>38 dB), and VSWRs less than 1.5:1 for both port1 and port2. The antenna exhibits an efficiency of around 58% and achieves a measured peak gain of approximately 32 dBi within the operating BW.
This study investigates the transport of particles in turbulent channel flow with friction Reynolds number $Re_\tau = 1000$ by direct numerical simulation. We focus on how large-scale flow structures, namely the $Qs$ structures (Lozano-Durán et al. 2012, J. Fluid Mech., vol. 694, pp. 100–130), affect the wall-normal transport of particles. Despite occupying less than $10\,\%$ of the physical domain, our results highlight the critical role played by $Qs$ structures in the particle transport, namely that the particle number and momentum flux inside the $Qs$ structures are substantially higher than outside. The fraction of particle wall-normal momentum flux inside $Qs$ structures is considerably larger than their volume fraction, suggesting highly efficient transport inside the $Qs$ structures. This prominent role played by $Qs$ structures in the transport of inertial particles is more effective by diminishing the inertia of particles. Notably, the long-distance transport of particles in the wall-normal direction is driven primarily by the continuous effect of $Qs$ structures. In summary, our findings advance the understanding of the effects of $Qs$ structures on particle transport, and demonstrate their significant role in the process.
The electromagnetically driven magnetised spherical Couette flow is studied experimentally, theoretically and numerically in the laminar regime. The working fluid, Galinstan, is contained in the spherical gap between two concentric spheres at rest. The electromagnetic stirring is primarily generated due to the interaction of a direct current, which is injected through two ring-shaped electrodes located at the equatorial zone of each sphere, and a dipolar magnetic field produced by a permanent magnet located inside the inner sphere. The flows were explored experimentally for a Reynolds number ranging from 450 to 2230 and a Hartmann number of 240. Ultrasound Doppler velocimetry and particle image velocimetry were used to characterise the flow. For low Reynolds numbers, given the symmetry of the problem, a one-dimensional analytic solution is obtained in the equatorial plane from the magnetohydrodynamic equations. The analytical solution reproduces the main characteristics of the flow. In addition, a full three-dimensional numerical model is able to reproduce both the analytical solution and the experimental measurements. To the best knowledge of the authors, this is the first time experimental results of the magnetised spherical Couette flow have been reported with electromagnetic forcing using a liquid metal as the working media.
Viscoplastic fluids exhibit yield stress, beyond which they flow viscously, while at lower stress levels they behave as solids. Despite their fundamental biological and medical importance, the hydrodynamics of swimming in viscoplastic environments is still evolving. In this study, we investigate the swimming of an ellipsoidal squirmer and the associated tracer diffusion in a Bingham viscoplastic fluid. The results illustrate that neutral squirmers in viscoplastic fluids experience a reduction in swimming speed and an increase in power dissipation as the Bingham number increases, with swimming efficiency peaking at moderate Bingham numbers. As the aspect ratio of a squirmer increases, ellipsoidal squirmers exhibit significantly higher swimming speeds in viscoplastic fluids. The polar and swirling modes can either enhance or reduce swimming speed, depending on the specific scenarios. These outcomes are closely related to the confinement effects induced by the yield surface surrounding the swimmer, highlighting how both swimmer shape and swimming mode can significantly alter the yield surface and, in turn, modify the swimming hydrodynamics. In addition, this study investigates the influence of viscoplasticity on swimmer-induced diffusion in a dilute suspension. The plasticity enforces the velocity far from the swimmer to be zero, thus breaking the assumptions used in Newtonian fluids. The diffusivity reaches its maximum at intermediate aspect ratios and Bingham numbers, and increases with the magnitude of the squirmer’s dipolarity. These findings are important to understand microscale swimming in viscoplastic environments and the suspension properties.
Hydrodynamic modulation of short ocean surface waves by longer ambient waves significantly influences remote sensing, interpretation of in situ wave measurements and numerical wave forecasting. This paper revisits the wave crest and action conservation laws and derives steady, nonlinear, analytical solutions for the change of short-wave wavenumber, action and gravitational acceleration due to the presence of longer waves. We validate the analytical solutions with numerical solutions of the full crest and action conservation equations. The nonlinear analytical solutions of short-wave wavenumber, amplitude and steepness modulation significantly deviate from the linear analytical solutions of Longuet-Higgins & Stewart (1960 J. Fluid Mech. vol. 8, no. 4, pp. 565–583) and are similar to the nonlinear numerical solutions by Longuet-Higgins (1987 J. Fluid Mech. vol. 177, pp. 293–306) and Zhang & Melville (1990 J. Fluid Mech. vol. 214, pp. 321–346). The short-wave steepness modulation is attributed 5/8 to wavenumber, 1/4 due to wave action and 1/8 due to effective gravity. Examining the homogeneity and stationarity requirements for the conservation of wave action reveals that stationarity is a stronger requirement and is generally not satisfied for very steep long waves. We examine the results of Peureux et al. (2021 J. Geophys. Res.: Oceans vol. 126, no. 1, e2020JC016735) who found through numerical simulations that the short-wave modulation grows unsteadily with each long-wave passage. We show that this unsteady growth only occurs for homogeneous initial conditions as a special case and not generally. The proposed steady solutions are a good approximation of the nonlinear crest-action conservation solutions in long-wave steepness $\lesssim 0.2$. Except for a subset of initial conditions, the solutions to the nonlinearised crest-action conservation equations are mostly steady in the reference frame of the long waves.
Sound entering the ear is known not only to transmit signals to the nerve system, but also to generate vortex-like steady streaming in the cochlea. This streaming has been suggested as the primary vehicle for drug delivery in the inner ear (Sumner, Mestel & Reichenbach, 2021, Sci. Rep., vol. 11, 57). An alternative vehicle by pure diffusion alone has also been suggested by Sadreev et al. (2019, Front. Cell. Neurosci., vol. 13, 161). This paper purports to examine both mechanisms analytically, and compare their relative importance, based on the two-dimensional model of Allen (1977, Acoust. Soc. Am., vol. 61, 110–119). First, we reconstruct the fluid mechanics of the Békséy vortices by an asymptotic theory of multiple scales as a complement to the two-dimensional numerical theory of Edom, Obrist & Kleiser (2014, J. Fluid Mech., vol. 753, 254–278). For discerning the difference between Sumner, Mestel & Reichenbach (2021) and Sadreev et al. (2019), we combine sound-induced streaming and molecular diffusion by modeling the drug as a solute of known diffusivity. It will be shown that due to the high frequency of sound, advection is augmented by the Lagrangian velocity, but molecular diffusion still dominates drug transport in the cochlear duct, unlike Taylor dispersion of pollutant by tides in a shallow river.
Recent advancements in wearable robots have focused on developing soft, compliant, and lightweight structures to provide comfort for the users and to achieve the primary function of assisting body motions. The interaction forces induced by physical human-robot interaction (pHRI) not only cause skin discomfort or pain due to relatively high localized pressures but also degrade the wearability and the safety of the wearer’s joints by unnaturally altering the joint reaction forces (JRFs) and the joint reaction moments (JRMs). Although the correlation between excessive JRFs/JRMs and joint-related conditions has been reported by researchers, the biomechanical effects of forces and moments caused by the pHRI of a wearable robot on the wearer’s joints remain under-analyzed. In this study, we propose a method of measuring and analyzing these interactions and effects, using a custom-designed soft, three-degree-of-freedom (DOF) force sensor. The sensor is made of four Hall effect sensors and a neodymium magnet embedded in a silicone elastomer structure, enabling simultaneous measurement of normal and two-axis shear forces by detecting the distance changes between the magnet and each Hall effect sensor. These sensors are embedded in contact pads of a commercial wearable robot and measure the interaction forces, used for calculating JRF and JRM. We also propose a modified inverse dynamics approach that allows us to consider the physical interactions between the robot and the human body. The proposed method of sensing and analysis provides the potential to enhance the design of future wearable robots, ensuring long-term safety.
This paper presents the design, implementation, and characterization of a compact two-stage analog phase-shifter for the Ka-band, based on thin-film technology. The design utilizes a reflective-type configuration, employing four metal-insulator-graphene diodes as reflective loads. The fabricated prototype is realized on an 8-µ m-thick flexible polyimide substrate and occupies less than 0.7 mm2 of chip area including the contact pads. Performance evaluation of the fabricated circuit reveals an S11 of better than −13 dB and an S21 of −3.3 dB with a tolerance of ± 0.5 dB across the frequency band from 28 to 36 GHz, along with a tunable phase difference ($\Delta\phi$) exceeding 70∘. The introduced flexible thin-film technology promotes the realization of flexible cost-effective beam steering for smart surfaces implementations for communication and biomedical applications.
Synthetic-aperture radar images and mesoscale models show that wind-farm wakes differ from single-turbine wakes. For instance, wind-farm wakes often narrow and do not disperse over long distances, contrasting the broader and more dissipating wakes of individual turbines. In this work, we aim to better understand the mechanisms that govern wind-farm wake behaviour and recovery. Hence we study the wake properties of a $1.6$ GW wind farm operating in conventionally neutral boundary layers with capping-inversion heights $203$, $319$, $507$ and $1001$ m. In shallow boundary layers, we find strong flow decelerations that reduce the Coriolis force magnitude, leading to an anticlockwise wake deflection in the Northern Hemisphere. In deep boundary layers, the vertical turbulent entrainment of momentum adds clockwise-turning flow from aloft into the wake region, leading to a faster recovery rate and a clockwise wake deflection. To estimate the wake properties, we propose a simple function to fit the velocity magnitude profiles along the spanwise direction. In the vertical direction, the wake spreads up to the capping-inversion height, which significantly limits vertical wake development in shallow-boundary-layer cases. In the horizontal direction and for shallow boundary layers, the wake behaves as two distinct mixing layers located at the lateral wake edges, which expand and turn towards their low-velocity side, causing the wake to narrow along the streamwise direction. A detailed analysis of the momentum budget reveals that in deep boundary layers, the wake is predominantly replenished through turbulent vertical entrainment. Conversely, in shallow boundary layers, wakes are mostly replenished by mean flow advection in the spanwise direction.
Bubble–particle collisions in turbulence are key to the froth flotation process that is widely employed industrially to separate hydrophobic from hydrophilic materials. In our previous study (Chan et al., 2023 J. Fluid Mech.959, A6), we elucidated the collision mechanisms and critically reviewed the collision models in the no-gravity limit. In reality, gravity may play a role since, ultimately, separation is achieved through buoyancy-induced rising of the bubbles. This effect has been included in several collision models, which have remained without a proper validation thus far due to a scarcity of available data. We therefore conduct direct numerical simulations of bubbles and particles in homogeneous isotropic turbulence with various Stokes, Froude and Reynolds numbers, and particle density ratios using the point-particle approximation. Generally, turbulence enhances the collision rate compared with the pure relative settling case by increasing the collision velocity. Surprisingly, however, for certain parameters the collision rate is lower with turbulence compared with without, independent of the history force. This is due to turbulence-induced bubble–particle spatial segregation, which is most prevalent at weak relative gravity and decreases as gravitational effects become more dominant, and reduced bubble slip velocity in turbulence. The existing bubble–particle collision models only qualitatively capture the trends in our numerical data. To improve on this, we extend the model by Dodin & Elperin (2002 Phys. Fluids14, 2921–2924) to the bubble–particle case and found excellent quantitative agreement for small Stokes numbers when the history force is negligible and segregation is accounted for.
The impact of the self-sealing band on interior ballistics is investigated during the gun launching, and a high-precision interior ballistics coupling algorithm that takes leakage into account is proposed. This study focuses on a 65 mm short-barrel, equal-caliber balanced cannon, integrating Abaqus finite element software with an interior ballistics calculation programme. It uses a User-defined AMPlication Load (VUAMP) subroutine to achieve real-time coupling calculations of the chamber pressure and self-sealing band deformation, correcting variations in the chamber pressure. Experimental results show that the coupling algorithm offers the higher precision compared to traditional interior ballistics models and can effectively capture the impact of leakage on the interior ballistics performance. Further research reveals that changes in the charge amount and assembly gap significantly affect the sealing performance of the self-sealing band and the leakage of propellant gases, which in turn influence the chamber pressure and projectile velocity. The high-precision coupling algorithm proposed in this paper provides the effective theoretical support for the design of the self-sealing band and the analysis of cannon performance.
An all-silica-fiber thulium-doped fiber laser emitting at 0.82 μm on the transition from 3H4 to the ground state 3H6 outputs 105 W continuous-wave power and 555 W quasi-continuous-wave instantaneous power with 0.96% duty cycle in 240 μs rectangular pulses. The system comprises a double-clad thulium-doped fiber designed and fabricated in-house, incorporated into an all-fiber cavity and cladding-pumped by diode lasers at 0.79 μm. Co-lasing at 1.9 μm counteracts population trapping in 3F4. The slope efficiency reaches 64% and 77.5% under quasi-continuous-wave and continuous-wave operations, respectively. Under quasi-continuous-wave conditions, the beam quality M2 becomes 2.2 (beam parameter product: 0.57 mm mrad) and 2.45 (0.64 mm mrad) in orthogonal directions at approximately 250 W of instantaneous output power. In addition, a modified quasi-continuous-wave setup is continuously wavelength-tunable from 812 to 835 nm. We believe this is the first reported demonstration of high-power laser operation of the 3H4 → 3H6 transition in a thulium-doped fiber.
A type of signal-interference fourth-order dual-band bandpass filter (BPF) with multiple out-of-band transmission zeros (TZs) is reported. A second-order dual-band BPF block is firstly discussed, which is composed of two microstrip-to-slotline vertical transitions that are back-to-back connected by means of an in-parallel asymmetrical microstrip-line-based closed loop. It exhibits spectrally symmetrical passbands regarding the design frequency fD and three TZs at the inter-band region. Subsequently, by using stepped-impedance-line segments at the longest path of the transversal signal-interference closed loop, its dual-band BPF counterpart with second-order spectrally asymmetrical dual passbands is presented. Next, in order to increase the filter order as well as the number of out-of-band TZs for augmented stopband attenuation, a fourth-order dual-band BPF circuit is conceived. To this aim, two Y-shaped stepped-impedance microstrip stubs are loaded at the input and output ports of the previously devised second-order frequency-symmetrical dual-band BPF block. The RF operational principles of all these dual-band BPFs are detailed through their associated transmission-line-based equivalent circuits. Moreover, for experimental-demonstration purposes, a 1.154-/2.818-GHz two-layer microstrip proof-of-concept prototype of a fourth-order sharp-rejection dual-band BPF is designed, simulated, and characterized. It features inter-band power-rejection levels higher than 28.68 dB and lower-/upper-stopband attenuation levels above 40.92 dB from DC to 4.64 GHz.
To elucidate the attenuation mechanism of wall-bounded turbulence due to heavy small particles, we conduct direct numerical simulations (DNS) of turbulent channel flow laden with finite-size solid particles. When particles cannot follow the swirling motions of wall-attached vortices, vortex rings are created around the particles. These particle-induced vortices lead to additional energy dissipation, reducing the turbulent energy production from the mean flow. This mechanism results in the attenuation of turbulent kinetic energy, which is more significant when the Stokes number of particles is larger or particle size is smaller under the condition that the volume fraction of particles is fixed. Moreover, we propose a method to quantitatively predict the degree of turbulence attenuation without using DNS data by estimating the additional energy dissipation rate in terms of particle properties.
Inspired by the need to theoretically understand the naturally occurring interactions between internal waves and mesoscale phenomena in the ocean, we derive a novel model equation from the primitive rotational Euler equations using the multi-scale asymptotic expansion method. By applying the classic balance $\epsilon =\mu ^2$ between nonlinearity (measured by $\epsilon$) and dispersion (measured by $\mu$), along with the assumption that variations in the transverse direction are of order $\mu$, which is smaller than those in the propagation direction, we arrive at terms from the classic Kadomtsev–Petviashvili equation. However, when incorporating background shear currents in two horizontal dimensions and accounting for Earth’s rotation, we introduce three additional terms that, to the best of the authors’ knowledge, have not been addressed in the previous literature. Theoretical analyses and numerical results indicate that these three terms contribute to a tendency for propagation in the transverse direction and an overall variation in wave amplitudes. The specific effects of these terms can be estimated qualitatively based on the signs of the coefficients for each term and the characteristics of the initial waves. Finally, the potential shortcomings of this proposed equation are illuminated.
This article aims at facilitating the widespread application of Energy Management Systems (EMSs), especially in buildings and cities, in order to support the realization of future carbon-neutral energy systems. We claim that economic viability is a severe issue for the utilization of EMSs at scale and that the provisioning of forecasting and optimization algorithms as a service can make a major contribution to achieving it. To this end, we present the Energy Service Generics software framework that allows the derivation of fully functional services from existing forecasting or optimization code with ease. This work documents the strictly systematic development of the framework, beginning with requirement analysis, from which a sophisticated design concept is derived, followed by a description of the implementation of the framework. Furthermore, we present the concept of the Open Energy Services community, our effort to continuously maintain the service framework but also provide ready-to-use forecasting and optimization services. Finally, an evaluation of our framework and community concept, as well as a demarcation between our work and the current state of the art, is presented.
Older adults often experience a decline in functional abilities, affecting their independence and mobility at home. Wearable lower-limb exoskeletons (LLEs) have the potential to serve as both assistive devices to support mobility and training tools to enhance physical capabilities. However, active end-user involvement is crucial to ensure LLEs align with users’ needs and preferences. This study employed a co-design methodology to explore home-based LLE requirements from the perspectives of older adults with mobility impairments and physiotherapists. Four older adults with self-reported mobility limitations participated by creating personas to represent different user needs and experiences (i.e., PERCEPT methodology), alongside four experienced physiotherapists who contributed their professional insights. As assistive devices, LLEs were seen as valuable for promoting independence, supporting mobility, and facilitating social participation, with essential activities including shopping, toileting, and outdoor walking. Physiotherapists expressed enthusiasm for integrating LLEs into remote rehabilitation programs, particularly to improve strength, balance, coordination, and walking speed. Key design considerations included a lightweight, discreet device that is easy to don and doff and comfortable for extended wear. Physiotherapists highlighted the potential of digital monitoring to assess physical parameters and personalize therapy. Fatigue emerged as a significant challenge for older adults, reinforcing the need for assistive LLEs to alleviate exhaustion and enhance functional independence. A shortlist of LLE features was drafted and scored, covering activity and design applications. These findings provide valuable insights into the design and usability of home-based LLEs, offering a foundation for developing devices that improve acceptance, usability, and long-term impact on healthy ageing.
The hypersonic vehicle surfaces are subjected to intense thermal loads during atmospheric re-entry. Such conditions induce material ablation and structural deformation, potentially causing changes to aerodynamic configuration that critically endanger mission integrity. In this paper, a mathematical model of thermochemical non-equilibrium magnetohydrodynamics (MHD) at low magnetic Reynolds number is introduced to investigate the effects of MHD on the flow field. Variation of the magnetic pole angle (θ), the flow field profiles are quantitatively analysed, including gas component distributions and aerodynamic heating characteristics. Results indicate that the heat flux at the stagnation point initially decreases and then increases with θ increasing, reaching a minimum at θ = 60°. A portion of the heat flux from the blunt position is transferred to the shoulder (α between 30° and 60°). Notably, the shock standoff distance also shows a non-monotonic trend with θ increasing, peaking at θ = 30°, mirroring the effect of θ on the stagnation point heat flux. As θ increases, the component of the Lorentz force along the X-direction gradually increases, with its peak position corresponding to the shock standoff distance. The electrons and nitrogen atoms are primarily concentrated at the blunt nose, while nitric oxide and oxygen atoms are predominantly distributed along the vehicle wall. The dissociation region of the gas is influenced by the shock standoff distance, which increases as the shock standoff distance increases. At θ = 30°, the concentration of oxygen atoms, nitrogen atoms, nitric oxide molecules and electrons on the stagnation point line reaches its maximum. The present study provides a theoretical foundation for the application of MHD thermal protection methods on hypersonic vehicles.
Direct numerical simulations are performed to explore the impact of surface roughness on inter-scale energy transfer and interaction in a turbulent open-channel flow over differently arranged rough walls. With friction Reynolds number approximately 540, six distinct configurations of roughness arrangements are examined. The results show that the clustered roughness arrangements yield notable changes in large-scale secondary-flow structures, which manifest in the profiles of dispersive stresses, predominantly near the roughness elements. They are marked by the presence of spanwise alternating high-momentum pathways and low-momentum pathways. From the outer peak in the spanwise energy spectra, the size and intensity of turbulent secondary flows are shown to be related to the spanwise spacing of the roughness heterogeneity. The emergence of turbulent secondary flows serves to suppress the original large-scale structures in the outer region of smooth-wall turbulence, paving the way for the development of new turbulent structures at the second harmonic scale. Furthermore, the spanwise triadic interaction analysis reveals the mutual energy exchange between the secondary harmonic scale and the secondary-flow scale. These findings elucidate the underlying mechanisms behind the attenuation of large-scale structures in the outer region influenced by roughness, offering new insights into the dynamic interplay of scale interactions in rough-wall turbulence.