We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a synthetic Bonnet–Myers rigidity theorem for globally hyperbolic Lorentzian length spaces with global curvature bounded below by K < 0 and an open distance realizer of length $L=\frac{\pi}{\sqrt{|K|}}$: It states that the space necessarily is a warped product with warping function $\cos: (-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}_+$. From this, one also sees that a globally hyperbolic spacetime with curvature bounded above by K < 0 and an open distance realizer of length $L=\frac{\pi}{\sqrt{|K|}}$ is a warped product with warping function cos.
We study the topological structure of the space $\mathcal{X}$ of isomorphism classes of metric measure spaces equipped with the box or concentration topologies. We consider the scale-change action of the multiplicative group ${\mathbb{R}}_+$ of positive real numbers on $\mathcal{X}$, which has a one-point metric measure space, say $*$, as only one fixed-point. We prove that the ${\mathbb{R}}_+$-action on $\mathcal{X}_* := \mathcal{X} \setminus \{*\}$ admits the structure of non-trivial and locally trivial principal ${\mathbb{R}}_+$-bundle over the quotient space. Our bundle ${\mathbb{R}}_+ \to \mathcal{X}_* \to \mathcal{X}_*/{\mathbb{R}}_+$ is a curious example of a non-trivial principal fibre bundle with contractible fibre. A similar statement is obtained for the pyramidal compactification of $\mathcal{X}$, where we completely determine the structure of the fixed-point set of the ${\mathbb{R}}_+$-action on the compactification.
For a proper, Gromov-hyperbolic metric space and a discrete, non-elementary, group of isometries, we define a natural subset of the limit set at infinity of the group called the ergodic limit set. The name is motivated by the fact that every ergodic measure which is invariant for the geodesic flow on the quotient metric space is concentrated on geodesics with endpoints belonging to the ergodic limit set. We refine the classical Bishop–Jones theorem proving that the packing dimension of the ergodic limit set coincides with the critical exponent of the group.
We show that for $n \neq 1,4$, the simplicial volume of an inward tame triangulable open $n$-manifold $M$ with amenable fundamental group at infinity at each end is finite; moreover, we show that if also $\pi _1(M)$ is amenable, then the simplicial volume of $M$ vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.
We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$, then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$. For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$.
In this paper, we derive new differential Harnack estimates of Li–Yau type for positive smooth solutions to a class of nonlinear parabolic equations in the form
on smooth metric measure spaces where the metric and potential are time dependent and evolve under a $({\mathsf k},\, m)$-super Perelman–Ricci flow. A number of consequences, most notably, a parabolic Harnack inequality, a class of Hamilton type global curvature-free estimates and a general Liouville type theorem together with some consequences are established. Some special cases are presented to illustrate the strength of the results.
We prove topological regularity results for isoperimetric sets in PI spaces having a suitable deformation property, which prescribes a control on the increment of the perimeter of sets under perturbations with balls. More precisely, we prove that isoperimetric sets are open, satisfy boundary density estimates and, under a uniform lower bound on the volumes of unit balls, are bounded. Our results apply, in particular, to the class of possibly collapsed $\mathrm {RCD}(K,N)$ spaces. As a consequence, the rigidity in the isoperimetric inequality on possibly collapsed $\mathrm {RCD}(0,N)$ spaces with Euclidean volume growth holds without the additional assumption on the boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean setting, as it simplifies some classical arguments.
We obtain a new upper bound for Neumann eigenvalues of the Laplacian on a bounded convex domain in Euclidean space. As an application of the upper bound, we derive universal inequalities for Neumann eigenvalues of the Laplacian.
This note is motivated by recent studies by Eriksson-Bique and Soultanis about the construction of charts in general metric measure spaces. We analyze their construction and provide an alternative and simpler proof of the fact that these charts exist on sets of finite Hausdorff dimension. The observation made here offers also some simplification about the study of the relation between the reference measure and the charts in the setting of $\text {RCD}$ spaces.
Let $(M, F, m)$ be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in $L^p(M)(p>1)$ to the heat equation on $\mathbb R^+\times M$ is uniquely determined by the initial data. Moreover, we give an $L^p(0<p\leq 1)$ Liouville-type theorem for nonnegative subsolutions u to the heat equation on $\mathbb R\times M$ by establishing the local $L^p$ mean value inequality for u on M with Ric$_N\geq -K(K\geq 0)$.
For subsets in the standard symplectic space $(\mathbb {R}^{2n},\omega _0)$ whose closures are intersecting with coisotropic subspace $\mathbb {R}^{n,k}$ we construct relative versions of the Ekeland–Hofer capacities of the subsets with respect to $\mathbb {R}^{n,k}$, establish representation formulas for such capacities of bounded convex domains intersecting with $\mathbb {R}^{n,k}$. We also prove a product formula and a fact that the value of this capacity on a hypersurface $\mathcal {S}$ of restricted contact type containing the origin is equal to the action of a generalized leafwise chord on $\mathcal {S}$.
We construct one-dimensional foliations which are subfoliations of two-dimensional foliations in
$3$
-manifolds. The subfoliation is by quasigeodesics in each two-dimensional leaf, but it is not funnel: not all quasigeodesics share a common ideal point in most leaves.
We provide examples of infinitesimally Hilbertian, rectifiable, Ahlfors regular metric measure spaces having pmGH-tangents that are not infinitesimally Hilbertian.
We show continuity under equivariant Gromov–Hausdorff convergence of the critical exponent of discrete, non-elementary, torsion-free, quasiconvex-cocompact groups with uniformly bounded codiameter acting on uniformly Gromov-hyperbolic metric spaces.
In this paper, we classify the three-dimensional partially hyperbolic diffeomorphisms whose stable, unstable, and central distributions
$E^s$
,
$E^u$
, and
$E^c$
are smooth, such that
$E^s\oplus E^u$
is a contact distribution, and whose non-wandering set equals the whole manifold. We prove that up to a finite quotient or a finite power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov flow, or to an affine partially hyperbolic automorphism of a nil-
${\mathrm {Heis}}{(3)}$
-manifold. The rigid geometric structure induced by the invariant distributions plays a fundamental part in the proof.
We establish a straightforward estimate for the number of open sets with fundamental group constraints needed to cover the total space of fibrations. This leads to vanishing results for simplicial volume and minimal volume entropy, e.g., for certain mapping tori.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.
We first introduce the weighted averaged projection sequence in $\text{CAT}(\unicode[STIX]{x1D705})$ spaces and then we establish some inequalities for the weighted averaged projection sequence. Using the inequalities, we prove the asymptotic regularity and the $\unicode[STIX]{x1D6E5}$-convergence of the weighted averaged projection sequence. Furthermore, we prove the strong convergence of the sequence under certain regularity or compactness conditions on $\text{CAT}(\unicode[STIX]{x1D705})$ spaces.
The simplicial complexity is an invariant for finitely presentable groups which was recently introduced by Babenko, Balacheff, and Bulteau to study systolic area. The simplicial complexity κ(G) was proved to be a good approximation of the systolic area σ(G) for large values of κ(G). In this paper we compute the simplicial complexity of all surface groups (both in the orientable and in the non-orientable case). This partially settles a problem raised by Babenko, Balacheff, and Bulteau. We also prove that κ(G * ℤ) = κ(G) for any surface group G. This provides the first partial evidence in favor of the conjecture of the stability of the simplicial complexity under free product with free groups. The general stability problem, both for simplicial complexity and for systolic area, remains open.
The main result of this paper is the following: any weighted Riemannian manifold $(M,g,\unicode[STIX]{x1D707})$, i.e., a Riemannian manifold $(M,g)$ endowed with a generic non-negative Radon measure $\unicode[STIX]{x1D707}$, is infinitesimally Hilbertian, which means that its associated Sobolev space $W^{1,2}(M,g,\unicode[STIX]{x1D707})$ is a Hilbert space.
We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold $(M,F,\unicode[STIX]{x1D707})$ can be isometrically embedded into the space of all measurable sections of the tangent bundle of $M$ that are $2$-integrable with respect to $\unicode[STIX]{x1D707}$.
By following the same approach, we also prove that all weighted (sub-Riemannian) Carnot groups are infinitesimally Hilbertian.