We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study for each fixed integer $g \ge 2$, for all primes $\ell $ and p with $\ell \neq p$, finite regular directed graphs associated with the set of equivalence classes of $\ell $-marked principally polarized superspecial abelian varieties of dimension g in characteristic p, and show that the adjacency matrices have real eigenvalues with spectral gaps independent of p. This implies a rapid mixing property of natural random walks on the family of isogeny graphs beyond the elliptic curve case and suggests a potential construction of the Charles–Goren–Lauter-type cryptographic hash functions for abelian varieties. We give explicit lower bounds for the gaps in terms of the Kazhdan constant for the symplectic group when $g \ge 2$. As a byproduct, we also show that the finite regular directed graphs constructed by Jordan and Zaytman also has the same property.
To each automorphism of a spherical building, there is a naturally associated opposition diagram, which encodes the types of the simplices of the building that are mapped onto opposite simplices. If no chamber (that is, no maximal simplex) of the building is mapped onto an opposite chamber, then the automorphism is called domestic. In this paper, we give the complete classification of domestic automorphisms of split spherical buildings of types
$\mathsf {E}_6$
,
$\mathsf {F}_4$
, and
$\mathsf {G}_2$
. Moreover, for all split spherical buildings of exceptional type, we classify (i) the domestic homologies, (ii) the opposition diagrams arising from elements of the standard unipotent subgroup of the Chevalley group, and (iii) the automorphisms with opposition diagrams with at most two distinguished orbits encircled. Our results provide unexpected characterizations of long root elations and products of perpendicular long root elations in long root geometries, and analogues of the density theorem for connected linear algebraic groups in the setting of Chevalley groups over arbitrary fields.
Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.
A Tits polygon is a bipartite graph in which the neighborhood of every vertex is endowed with an “opposition relation” satisfying certain properties. Moufang polygons are precisely the Tits polygons in which these opposition relations are all trivial. There is a standard construction that produces a Tits polygon whose opposition relations are not all trivial from an arbitrary pair $(\unicode[STIX]{x1D6E5},T)$, where $\unicode[STIX]{x1D6E5}$ is a building of type $\unicode[STIX]{x1D6F1}$, $\unicode[STIX]{x1D6F1}$ is a spherical, irreducible Coxeter diagram of rank at least $3$, and $T$ is a Tits index of absolute type $\unicode[STIX]{x1D6F1}$ and relative rank $2$. A Tits polygon is called $k$-plump if its opposition relations satisfy a mild condition that is satisfied by all Tits triangles coming from a pair $(\unicode[STIX]{x1D6E5},T)$ such that every panel of $\unicode[STIX]{x1D6E5}$ has at least $k+1$ chambers. We show that a $5$-plump Tits triangle is parametrized and uniquely determined by a ring $R$ that is alternative and of stable rank $2$. We use the connection between Tits triangles and the theory of Veldkamp planes as developed by Veldkamp and Faulkner to show existence.
We provide a combinatorial characterization of LG(3,6)(${\mathbb{K}}$) using an axiom set which is the natural continuation of the Mazzocca–Melone set we used to characterize Severi varieties over arbitrary fields (Schillewaert and Van Maldeghem, Severi varieties over arbitrary fields, Preprint). This fits within a large project aiming at constructing and characterizing the varieties related to the Freudenthal–Tits magic square.
We prove simplicity for incomplete rank 2 Kac—Moody groups over algebraic closures of finite fields with trivial commutation relations between root groups corresponding to prenilpotent pairs. We don't use the (yet unknown) simplicity of the corresponding finitely generated groups (i.e., when the ground field is finite). Nevertheless we use the fact that the latter groups are just infinite (modulo center).
Let $G$ be a simple algebraic group. Labelled trivalent graphs called webs can be used to produce invariants in tensor products of minuscule representations. For each web, we construct a configuration space of points in the affine Grassmannian. Via the geometric Satake correspondence, we relate these configuration spaces to the invariant vectors coming from webs. In the case of $G= \mathrm{SL} (3)$, non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is $\mathrm{CAT} (0)$, is explained by the fact that affine buildings are $\mathrm{CAT} (0)$.
We give an explicit construction of the Ree groups of type G2 as groups acting on mixed Moufang hexagons together with detailed proofs of the basic properties of these groups contained in the two fundamental papers of Tits on this subject (see [7] and [8]). We also give a short proof that the norm of a Ree group is anisotropic.
Given a complete $\text{CAT}(0)$ space $X$ endowed with a geometric action of a group $\Gamma $, it is known that if $\Gamma $ contains a free abelian group of rank $n$, then $X$ contains a geometric flat of dimension $n$. We prove the converse of this statement in the special case where $X$ is a convex subcomplex of the $\text{CAT}(0)$ realization of a Coxeter group $W$, and $\Gamma $ is a subgroup of $W$. In particular a convex cocompact subgroup of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2. Our result also provides an explicit control on geometric flats in the $\text{CAT}(0)$ realization of arbitrary Tits buildings.
If G is a (split) Kac–Moody group over a field K endowed with a real valuation $\omega$, we build an action of G on a geometric object $\mathcal I$. This object is called a building, as it is an union of apartments, with the classical properties of systems of apartments. However, these apartments are more exotic: that associated to a torus T may be seen as the gluing of all Satake compactifications of affine apartments of T with respect to spherical parabolic subgroups of G containing T. Another geometric realization of these apartments makes them look more like the apartments of $\Lambda$-buildings; then the translations of the Weyl group act only on infinitely small elements of the apartment, so we call these buildings microaffine.
Let ${\cal D}$ be a complex of non-trivial $p$-subgroups of a finite group $G$, closed under $G$-conjugation. In this paper, a $p$-local geometry $\Delta_p(G; {\cal D})$ is introduced for $G$ associated with the complex ${\cal D}$. The homotopy equivalence between $\Delta_p(G; {\cal D})$ and ${\cal D}$ is also studied.
We describe the set of numbers ${{\sigma }_{k}}\left( {{z}_{1}},\cdot \cdot \cdot ,{{z}_{n+1}} \right)$, where ${{z}_{1}},\cdot \cdot \cdot ,{{z}_{n+1}}$ are complex numbers of modulus 1 for which ${{z}_{1}}{{z}_{2}}\cdot \cdot \cdot {{z}_{n+1}}=1$, and ${{\sigma }_{k}}$ denotes the $k$-th elementary symmetric polynomial. Consequently, we give sharp constraints on the coefficients of a complex polynomial all of whose roots are of the same modulus. Another application is the calculation of the spectrum of certain adjacency operators arising naturally on a building of type ${{\overset{\sim }{\mathop{\text{A}}}\,}_{n}}$.
Let $\Gamma$ be a torsion free lattice in $G=\text{PGL}\left( 3,\mathbb{F} \right)$ where $\mathbb{F}$ is a nonarchimedean local field. Then $\Gamma$ acts freely on the affine Bruhat-Tits building $B$ of $G$ and there is an induced action on the boundary $\Omega$ of $B$. The crossed product
${{C}^{*}}$
-algebra $\mathcal{A}\left( \Gamma \right)=C\left( \Omega \right)\rtimes \Gamma$ depends only on $\Gamma$ and is classified by its $K$-theory. This article shows how to compute the $K$-theory of $\mathcal{A}\left( \Gamma \right)$ and of the larger class of rank two Cuntz-Krieger algebras.
In this paper, we present a geometric construction of the Moufang quadrangles discovered by Richard Weiss (see Tits & Weiss [18] or Van Maldeghem [19]). The construction uses fixed point free involutions in certain mixed quadrangles, which are then extended to involutions of certain buildings of type
${{F}_{4}}$. The fixed flags of each such involution constitute a generalized quadrangle. This way, not only the new exceptional quadrangles can be constructed, but also some special type of mixed quadrangles.
This paper is an expository introduction to recent and current work on geometries associated with minimal parabolic subgroups and maximal 2-local subgroups of finite sporadic, based on lectures given by the authors at the Canberra Group Workshop, held at the Australian National University in June 1993.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.