To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider a reaction-diffusion equation that models the time-almost periodic response to climate change within a straight, infinite cylindrical domain. The shifting edge of the habitat is characterised by a time-almost periodic function, reflecting the varying pace of environmental changes. Note that the principal spectral theory is an important role to study the dynamics of reaction-diffusion equations in time heterogeneous environment. Initially, for time-almost periodic parabolic equations in finite cylindrical domains, we develop the principal spectral theory of such equations with mixed Dirichlet–Neumann boundary conditions. Subsequently, we demonstrate that the approximate principal Lyapunov exponent serves as a definitive threshold for species persistence versus extinction. Then, the existence, exponential decay and stability of the forced wave solutions $U(t,x_{1},y)=V\left (t,x_{1}-\int ^{t}_{0}c(s)ds,y\right )$ are established. Additionally, we analyse how fluctuations in the shifting speed affect the approximate top Lyapunov exponent.
Given $p\in[1,\infty)$ and a bounded open set $\Omega\subset\mathbb{R}^d$ with Lipschitz boundary, we study the $\Gamma$-convergence of the weighted fractional seminorm
as $s\to1^-$ for $u\in L^p(\Omega)$, where $\tilde u=u$ on $\Omega$ and $\tilde u=0$ on $\mathbb{R}^d\setminus\Omega$. Assuming that $(f_s)_{s\in(0,1)}\subset L^\infty(\mathbb{R}^d;[0,\infty))$ and $f\in\mathrm{Lip}_b(\mathbb{R}^d;(0,\infty))$ are such that $f_s\to f$ in $L^\infty(\mathbb{R}^d)$ as $s\to1^-$, we show that $(1-s)[u]_{s,p,f_s}^p$$\Gamma$-converges to the Dirichlet $p$-energy weighted by $f^2$. In the case $p=2$, we also prove the convergence of the corresponding gradient flows.
This paper is devoted to a comprehensive analysis of a family of solutions of the focusing nonlinear Schrödinger equation called general rogue waves of infinite order. These solutions have recently been shown to describe various limit processes involving large-amplitude waves, and they have also appeared in some physical models not directly connected with nonlinear Schrödinger equations. We establish the following key property of these solutions: they are all in $L^2(\mathbb{R})$ with respect to the spatial variable but they exhibit anomalously slow temporal decay. In this paper, we define general rogue waves of infinite order, establish their basic exact and asymptotic properties, and provide computational tools for calculating them accurately.
where $a\geq 0$, b > 0, the function V(x) is a trapping potential in a bounded domain $\Omega\subset\mathbb R^3$, $\beta^*:=\frac{b}{2}|Q|_2^{\frac{8}{3}}$ and Q is the unique positive radially symmetric solution of equation $-2\Delta u+\frac{1}{3}u-|u|^{\frac{8}{3}}u=0$ in $\mathbb R^3.$ We consider the existence of constraint minimizers for the associated energy functional involving the parameter a. The minimizer corresponds to the normalized ground state of above problem, and it exists if and only if a > 0. Moreover, when V(x) attains its flattest global minimum at an inner point or only at the boundary of Ω, we analyze the fine limit profiles of the minimizers as $a\searrow 0$, including mass concentration at an inner point or near the boundary of Ω. In particular, we further establish the local uniqueness of the minimizer if it is concentrated at a unique inner point.
We study the long time dynamic properties of the nonlocal Kuramoto–Sivashinsky (KS) equation with multiplicative white noise. First, we consider the dynamic properties of the stochastic nonlocal KS equation via a transformation into the associated conjugated random differential equation. Next, we prove the existence and uniqueness of solution for the conjugated random differential equation in the theory of random dynamical systems. We also establish the existence and uniqueness of a random attractor for the stochastic nonlocal equation.
We consider the propagation dynamics of a single species with a birth pulse and living in a shifting environment driven by climate change. We describe how birth pulse and environment shift jointly impact the propagation properties. We show that a moderate environment shifting speed promotes the spatial–temporal propagation represented by a stable forced KPP wave, and that the birth pulse shrinks the survival region.
We consider the asymptotics of long-time behavior of a solution u of the semilinear parabolic problem $\partial _tu=\Delta u-u+u|u|^{p-2}$ in ${\mathbb {R}^N}\times (0,\infty )$, $u(0)=u_0\in H^1({\mathbb {R}^N})\cap L^\infty ({\mathbb {R}^N})$. Since the spatial domain on which the problem is posed is noncompact, we cannot expect the relative compactness of the solution orbit, e.g., in $H^1({\mathbb {R}^N})$ in general. In this article, we prove that the compactness of the orbit holds up to the ground state energy level, namely, if $\lim _{t\to \infty }I(u(t))\leq d_\infty $, where I is the energy functional associated with (P) and $d_\infty $ its ground state energy, then the orbit of $u(t)$ is compact in $H^1({\mathbb {R}^N})$. Our result includes the previous results in [4, 5].
We investigate the pullback measure attractors for non-autonomous stochastic p-Laplacian equations driven by nonlinear noise on thin domains. The concept of complete orbits for such systems is presented to establish the structures of pullback measure attractors. We first present some essential uniform estimates, as well as the existence and uniqueness of pullback measure attractors. A novel technical proof method is shown to overcome the difficulty of the estimates of the solutions in $W^{1,p}$ on thin domains. Then, we prove the upper semicontinuity of these measure attractors as the $(n + 1)$-dimensional thin domains collapse onto the lower n-dimensional space.
This paper is the latter part of a series of our studies on the concentration and oscillation analysis of semilinear elliptic equations with exponential growth $e^{u^p}$. In the first one [17], we completed the concentration analysis of blow-up positive solutions in the supercritical case p > 2 via a scaling approach. As a result, we detected infinite sequences of concentrating parts with precise quantification. In the present paper, we proceed to our second aim, the oscillation analysis. Especially, we deduce an infinite oscillation estimate directly from the previous infinite concentration ones. This allows us to investigate intersection properties between blow-up solutions and singular functions. Consequently, we show that the intersection number between blow-up and singular solutions diverges to infinity. This leads to a proof of infinite oscillations of bifurcation diagrams, which ensures the existence of infinitely many solutions. Finally, we also remark on infinite concentration and oscillation phenomena in the limit cases $p\to2^+$ and $p\to \infty$.
We study the timelike asymptotics for global solutions to a scalar quasilinear wave equation satisfying the weak null condition. Given a global solution u to the scalar wave equation with sufficiently small $C_c^\infty $ initial data, we derive an asymptotic formula for this global solution inside the light cone (i.e. for $|x|<t$). It involves the scattering data obtained in the author’s asymptotic completeness result in [75]. Using this asymptotic formula, we prove that u must vanish under some decaying assumptions on u or its scattering data, provided that the wave equation violates the null condition.
In this article, we investigate a free boundary problem for the Lotka–Volterra model consisting of an invasive species with density u and a native species with density v in one dimension. We assume that v undergoes diffusion and growth in $[0,+\infty )$, and u invades into the environment with spreading front $x=h(t)$ satisfying free boundary condition $h'(t)=-u_x(t,h(t))-\alpha $ for some decay rate $\alpha>0$, this is caused by the bad environment at the boundary. When u is an inferior competitor, $u(t,x)$ and $h(t)$ tend to 0 within a finite time, while another specie $v(t,x)$ tends to a stationary $\Lambda (x)$ defined on the half-line. When u is a superior competitor, we have a trichotomy result: spreading of u and vanishing of v (i.e., as $t \to +\infty $, $h(t)$ goes to $+\infty $ and $(u,v)\to (\Lambda ,0)$); the transition case (i.e., as $t \to +\infty $, $(u,v)\to (w_\alpha , \eta _\alpha )$, $h(t)$ tends to a finite point); vanishing of u and spreading of v (i.e., $u(t,x)$ and $h(t)$ tends to 0 within a finite time, $v(t,x)$ converges to $\Lambda (x)$). Additionally, we show that this trichotomy result depends on the initial data $u(0,x)$.
which models the motion of swimming bacteria in water flows. First, we prove blow-up criteria of strong solutions to the Cauchy problem, including the Prodi-Serrin-type criterion for $\alpha \gt \frac {3}{4}$ and the Beir$\tilde {\textrm {a}}$o da Veiga-type criterion for $\alpha \gt \frac {1}{2}$. Then, we verify the global existence and uniqueness of strong solutions for arbitrarily large initial fluid velocity and bacteria density for $\alpha \geq \frac {5}{4}$. Furthermore, in the scenario of $\frac {3}{4}\lt \alpha \lt \frac {5}{4}$, we establish uniform regularity estimates and optimal time-decay rates of global solutions if only the $L^2$-norm of initial data is small. To our knowledge, this work provides the first result concerning the global existence and large-time behaviour of strong solutions for the chemotaxis-Navier–Stokes equations with possibly large oscillations.
This article is dedicated to investigating limit behaviours of invariant measures with respect to delay and system parameters of 3D Navier–Stokes–Voigt equations. Firstly, the well-posedness of such a system is obtained on arbitrary open sets that satisfy the Poincaré inequality, and then a unique minimal pullback attractor is attained by using the energy equation method and asymptotic compactness property. Furthermore, we construct a family of invariant Borel probability measures, which are supported on the pullback attractors. Specifically, when the external forcing terms are periodic in time, the periodic invariant measure can be obtained. Finally, as the delay approaches zero and system parameters tend to some numbers, the limit of the invariant measure sequences for this class of equations must be the invariant measure of the corresponding limit equations.
We investigate a recent model proposed in the literature elucidating patterns driven by chemotaxis, similar to viscous fingering phenomena. Notably, this model incorporates a singular advection term arising from a modified formulation of Darcy’s law. It is noteworthy that this type of advection can also be well interpreted as a description of a radial fluid flow source surrounding an aggregation of cells. For the two-dimensional scenario, we establish a precise threshold delineating between blow-up and global solution existence. This threshold is contingent upon the pressure magnitude and the initial total mass of the aggregating cells.
Well-posedness in time-weighted spaces of certain quasilinear (and semilinear) parabolic evolution equations $u'=A(u)u+f(u)$ is established. The focus lies on the case of strict inclusions $\mathrm{dom}(f)\subsetneq \mathrm{dom}(A)$ of the domains of the nonlinearities $u\mapsto f(u)$ and $u\mapsto A(u)$. Based on regularizing effects of parabolic equations it is shown that a semiflow is generated in intermediate spaces. In applications this allows one to derive global existence from weaker a priori estimates. The result is illustrated by examples of chemotaxis systems.
This paper deals with a 4th-order parabolic equation involving the Frobenius norm of a Hessian matrix, subject to the Neumann boundary conditions. Some threshold results for blow-up or global or extinction solutions are obtained through classifying the initial energy and the Nehari energy. The bounds of blow-up time, decay estimates, and extinction rates are studied, respectively.
This article studies the dynamical behaviour of classical solutions of a hyperbolic system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, with time-dependent boundary conditions. It is shown that under suitable assumptions on the boundary data, solutions starting in the $H^2$-space exist globally in time and the differences between the solutions and their corresponding boundary data converge to zero as time goes to infinity. There is no smallness restriction on the magnitude of the initial perturbations. Moreover, numerical simulations show that the assumptions on the boundary data are necessary for the above-mentioned results to hold true. In addition, numerical results indicate that the solutions converge asymptotically to time-periodic states if the boundary data are time-periodic.
This article offers an advanced and novel investigation into the intricate propagation dynamics of the Belousov–Zhabotinsky system with non-local delayed interaction, which exhibits dynamical transition structure from bistable to monostable. We first solved the enduring open problem concerning the existence, uniqueness and the speed sign of the bistable travelling waves. In the monostable case, we developed and derived new results for the minimal wave speed selection, which, as an application, further improved the existing investigations on pushed and pulled wavefronts. Our results can provide new estimate to the minimal speed as well as to the determinacy of the transition parameters. Moreover, these results can be directly applied to standard localised models and delayed reaction diffusion models by choosing appropriate kernel functions.
For microscale heterogeneous partial differential equations (PDEs), this article further develops novel theory and methodology for their macroscale mathematical/asymptotic homogenization. This article specifically encompasses the case of quasi-periodic heterogeneity with finite scale separation: no scale separation limit is required. A key innovation herein is to analyse the ensemble of all phase-shifts of the heterogeneity. Dynamical systems theory then frames the homogenization as a slow manifold of the ensemble. Depending upon any perceived scale separation within the quasi-periodic heterogeneity, the homogenization may be done in either one step or two sequential steps: the results are equivalent. The theory not only assures us of the existence and emergence of an exact homogenization at finite scale separation, it also provides a practical systematic method to construct the homogenization to any specified order. For a class of heterogeneities, we show that the macroscale homogenization is potentially valid down to lengths which are just twice that of the microscale heterogeneity! This methodology complements existing well-established results by providing a new rigorous and flexible approach to homogenization that potentially also provides correct macroscale initial and boundary conditions, treatment of forcing and control, and analysis of uncertainty.
In a smoothly bounded domain $\Omega \subset \mathbb{R}^n$, $n\ge 1$, this manuscript considers the homogeneous Neumann boundary problem for the chemotaxis system
\begin{eqnarray*} \left \{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v), \\[5pt] v_t = \Delta v + u - \alpha uv, \end{array} \right . \end{eqnarray*}
with parameter $\alpha \gt 0$ and with coincident production and uptake of attractants, as recently emphasized by Dallaston et al. as relevant for the understanding of T-cell dynamics.
It is shown that there exists $\delta _\star =\delta _\star (n)\gt 0$ such that for any given $\alpha \ge \frac{1}{\delta _\star }$ and for any suitably regular initial data satisfying $v(\cdot, 0)\le \delta _\star$, this problem admits a unique classical solution that stabilizes to the constant equilibrium $(\frac{1}{|\Omega |}\int _\Omega u(\cdot, 0), \, \frac{1}{\alpha })$ in the large time limit.