Hostname: page-component-68c7f8b79f-wfgm8 Total loading time: 0 Render date: 2025-12-20T11:17:53.388Z Has data issue: false hasContentIssue false

Propagation dynamics of time-dependent reaction-diffusion equations under climate change in an infinite cylinder

Published online by Cambridge University Press:  19 December 2025

Xiongxiong Bao*
Affiliation:
School of Science, Chang’an University, Xi’an, Shaanxi, P.R. China
Dun Zhou
Affiliation:
School of Mathematical and Statistics, Nanjing University of Science and Technology, Nanjing, P.R. China
*
Corresponding author: Xiongxiong Bao; Email: baoxx2016@chd.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we consider a reaction-diffusion equation that models the time-almost periodic response to climate change within a straight, infinite cylindrical domain. The shifting edge of the habitat is characterised by a time-almost periodic function, reflecting the varying pace of environmental changes. Note that the principal spectral theory is an important role to study the dynamics of reaction-diffusion equations in time heterogeneous environment. Initially, for time-almost periodic parabolic equations in finite cylindrical domains, we develop the principal spectral theory of such equations with mixed Dirichlet–Neumann boundary conditions. Subsequently, we demonstrate that the approximate principal Lyapunov exponent serves as a definitive threshold for species persistence versus extinction. Then, the existence, exponential decay and stability of the forced wave solutions $U(t,x_{1},y)=V\left (t,x_{1}-\int ^{t}_{0}c(s)ds,y\right )$ are established. Additionally, we analyse how fluctuations in the shifting speed affect the approximate top Lyapunov exponent.

Information

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

1. Introduction

This paper considers the following reaction-diffusion equation with Neumann boundary condition under climate change in an infinitely long straight cylinder:

(1.1) \begin{equation} \begin{cases} \partial _{t}u=\Delta u+f\left (t,x_{1}-\int ^{t}_{0}c(s)ds,y,u\right ),\, t\gt 0,x_{1}\in \mathbb{R}, y\in \omega ,\\[4pt] \partial _{\nu }u(t,x_{1},y)=0,\quad t\gt 0,x_{1}\in \mathbb{R},y\in \partial \omega . \end{cases} \end{equation}

We point that in (1.1) $\omega \subset \mathbb{R}^{N-1}$ is a bounded smooth domain. Here, $c\,:\,\mathbb{R}\rightarrow \mathbb{R}$ is H $\ddot {o}$ lder continuous and almost periodic in the sense that for any $\epsilon \gt 0$ , the set

\begin{equation*} T(c,\epsilon )=\{\tau \in \mathbb{R}\,:\, |c(t+\tau )-c(t)|\lt \epsilon ,\, t\in \mathbb{R}\} \end{equation*}

is relatively dense in $\mathbb{R}$ . Set

\begin{equation*} \Omega =\{(x_{1},y)\in \mathbb{R}\times \mathbb{R}^{N-1}\,:\, x_{1}\in \mathbb{R}, y\in \omega \}. \end{equation*}

Then, $\nu$ in (1.1) denotes the exterior unit normal vector field to $\Omega$ and $\partial _{\nu }\,:\!=\,\nu \cdot \nabla$ . In (1.1), $c(t)$ is the shifting speed of the climate envelope and $\int ^{t}_{0}c(s)ds$ is the location of the climate envelope. Let $f(t,x,u)=ug(t,x,u)$ , where the function $g\,:\,\mathbb{R}\times \Omega \times [0,+\infty )\rightarrow \mathbb{R}$ is continuously differentiable, uniformly continuous, and bounded on $\mathbb{R}\times \Omega \times [0,\delta ]$ for any $\delta \gt 0$ . Then, we have the following standard assumptions for $g(t,x,u)$ :

  1. (H1) $g(t,x,u)$ is almost periodic in $t$ uniformly with respect to $x\in \Omega$ and $u$ in bounded sets of $[0,+\infty )$ ;

  2. (H2) $g_{u}(t,x,u)\leq 0$ for all $(t,x,u)\in \mathbb{R}\times \Omega \times [0,+\infty )$ , and there is a domain $ D\subset \Omega$ with $|D|\gt 0$ such that $u\mapsto g(t,x,u)$ is decreasing on $\mathbb{R}^{+}$ for each $x\in D$ and $t\in \mathbb{R}$ ;

  3. (H3) there is $M_{0}\gt 0$ such that $\sup _{t\in \mathbb{R},x\in \Omega }g(t,x,u)\lt 0$ for all $u\geq M_{0}$ ;

  4. (H4) $\lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }g(t,x_{1},y,0)\lt 0$ .

Here, (H1)–(H2) say that $f(t,x,u)$ is of logistic type and $M_{0}$ in (H3) is an upper bound for the carrying capacity. Assumption (H4) means that the favourable zone where species can grow is bounded. A typical example of $g(t,x,u)$ satisfying (H1)–(H4) is $g(t,x,u)=a(t,x)-b(t,x)u$ with $a(t,x), b(t,x)\in L^{\infty }(\mathbb{R}\times \Omega )$ such that $b(t,x)\geq 0$ a.e. in $\mathbb{R}\times \Omega$ , $b(t,x)\gt 0$ in $\mathbb{R}\times D$ with $|D|\gt 0$ and $D\subset \Omega$ ,

\begin{equation*} \inf _{(t,x)\in \mathbb{R}\times \Omega \,:\,a(t,x)\gt 0}b(t,x)\gt 0,\quad \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }a(t,x_{1},y)\lt 0, \end{equation*}

where $a(t,x)$ and $b(t,x)$ are almost periodic in $t$ uniformly with respect to $x\in \Omega$ . Recall that a function $f(t,x)\in C(\mathbb{R}\times E,\mathbb{R})$ is said to be almost periodic in $t$ uniformly with respect to $x\in E\subset \mathbb{R}^{N}$ , if it is uniformly continuous on $\mathbb{R}\times E$ and for any fixed $x\in E$ , $f(t,x)$ is an almost periodic function of $t$ .

In the past years, to describe the impacts of global warming on biological species, a vast amount of research has been carried out regarding the population dynamics of reaction-diffusion equation system under climate change. See, for example, [Reference Berestycki, Diekmann, Nagelkerke and Zegeling1, Reference Berestycki, Desvillettes and Diekmann4, Reference Berestycki and Fang5, Reference Du, Wei and Zhou7, Reference Fang, Lou and Wu8, Reference Hu and Li11, Reference Hu, Shang and Li13, Reference Lewis, Marculis and Shen15, Reference Li, Wang and Zhao20Reference Potapov and Lewis22, Reference Wang, Li, Dong and Qiao28] and references therein. We also refer to see [Reference Wang, Li, Dong and Qiao28] for more results and understanding on the diffusion and propagation in shifting environments. It should be pointed out that in Berestycki and Rossi [Reference Berestycki and Rossi2], the authors proved the existence and uniqueness of travelling wave solutions of the type $u(t,x)=U(x-cte)$ for the reaction-diffusion equation

\begin{equation*} \partial _{t}u=\Delta u+f(x-cte,u), \quad t\gt 0,\, x\in \mathbb{R}^{N} \end{equation*}

and the large time behaviour of solutions with arbitrary nonnegative bounded initial datum depend on the sign of the generalised principle eigenvalue in $\mathbb{R}^{N}$ of an associated linear operator. These problems with $N=1$ have been studied in [Reference Berestycki, Desvillettes and Diekmann4] to investigate the impact of climate shift on the dynamics of a biological species. Berestycki and Rossi [Reference Berestycki and Rossi3] further established analogous results for the Neumann problem in domains which are asymptotically cylindrical, as well as for the problem in the whole space with $f$ periodic in some space variables, orthogonal to the direction of the life. When the environment is assumed to be only globally unfavourable, with favourable pockets extending to infinity, Vo [Reference Vo27] studied the persistence versus extinction of species in reaction-diffusion equation with an infinite cylindrical domain. Boubours and Giletti [Reference Bouhours and Giletti6] also studied the spreading and vanishing situations for a monostable reaction-diffusion equation when the initial datum is compactly supported. Recently, in a time-periodic shifting environment, Fang et al. [Reference Fang, Peng and Zhao9] studied a nonautonomous reaction-diffusion equation $u_{t}=u_{xx}+ug(t,x-ct,u)$ and showed that there exists $c^{*} \gt 0$ such that a unique forced time-periodic wave exists if and only if $|c|\lt c^{*}$ and it attracts other solutions in a certain sense according to the tail behaviour of initial values. Later, Zhang and Zhao [Reference Zhang and Zhao30] extended the above results to the nonlocal dispersal equation in time-periodic shifting environment.

From above works, we find that the shift environment is considered by $x-ct$ with a constant speed. In real environments, climate change is influenced by various seasonal variations and is rather fluctuating and unpredictable, leading to fluctuations in the size, shifting speed, and location of the climate envelope. Very recently, Shen et al. [Reference Shen, Shen, Xue and Zhou26] investigated the population dynamics of a reaction-diffusion equation under climate change in a spatiotemporally heterogeneous environment, which is described by a climate envelope shifting with a time-dependent speed function. They established the persistence criterion in term of the sign of the approximate top Lyapunov exponent and the existence of a unique forced wave solution that dominates the population profile of species in the long run.

Motivated by [Reference Berestycki and Rossi3] and [Reference Shen, Shen, Xue and Zhou26], in the current paper, we try to study the persistence criterion and the existence of forced waves solution of equation (1.1) with Neumann boundary conditions in time-dependent environment. Set $\partial _{1}\,:\!=\,\frac {\partial }{\partial x_{1}}$ . To consider (1.1) in the moving frame, we introduce the change of variable $v(t,x_{1},y)=u(t,x_{1}+\int ^{t}_{0}c(s)ds,y)$ , and $v(t,x_{1},y)$ satisfies the following reaction-diffusion equation with Neumann boundary condition

(1.2) \begin{equation} \begin{cases} \partial _{t}v=\Delta v+c(t)\partial _{1}v+f\left (t,x,v\right ),\, t\gt 0,x\in \Omega ,\\[4pt] \partial _{\nu }v(t,x)=0,\quad t\gt 0,x\in \partial \Omega . \end{cases} \end{equation}

Note that $v=0$ is a solution of (1.2). We first consider the stability of $v=0$ . Then the linearisation of (1.2) at $v=0$ is

(1.3) \begin{equation} \begin{cases} \partial _{t}w=\Delta w+c(t)\partial _{1}w+g(t,x,0)w,\quad t\gt 0,\,x\in \Omega ,\\[4pt] \partial _{\nu }w=0,\quad t\gt 0,\,x\in \partial \Omega . \end{cases} \end{equation}

Our main results depend on the sign of Neumann Lyapunov exponent of Neumann problem (1.3). The results on the Neumann principal Lyapunov exponent of (1.3) are given in Section 2. Set $L\gt 0$ . Denote by $\lambda _{L}$ the principal Lyapunov exponent of (1.3) restricted on $({-}L,L)\times \omega$ and equiped with Neumann boundary condition $\partial _{\nu }w=0$ on $({-}L,L)\times \partial \omega$ and Dirichlet boundary condition on $\pm L$ ,

(1.4) \begin{equation} \begin{cases} \partial _{t}w=\Delta w+c(t)\partial _{1}w+g(t,x,0)w,\quad t\gt 0,\,x\in ({-}L,L)\times \omega ,\\[4pt] \partial _{\nu }\omega =0,\quad t\gt 0,\,x\in ({-}L,L)\times \partial \omega ,\\[4pt] w(t,-L,y)=w(t,L,y)=0,\quad t\gt 0,\,y\in \omega . \end{cases} \end{equation}

We refer the reader to Section 2 for more details on the principal Lyapunov exponent $\lambda _{L}$ . It is shown in Lemma 2.2 that $\lambda _{L}$ is non-decreasing in $L$ and bounded above by $\sup _{t\in \mathbb{R},x\in [{-}L,L]\times \omega }g(t,x,0)$ , then

\begin{equation*} \lambda _{\infty }\,:\!=\,\lim _{L\rightarrow \infty }\lambda _{L} \end{equation*}

is well defined and called the approximate principal Lyapunov exponent of (1.3). In fact, $\lambda _{\infty }$ always has the same sign as that of the principal Lyapunov exponent $\lambda$ of (1.3), see Lemma 2.3 later.

Let

\begin{equation*} X=\left\{u\in C_b^1(\mathbb{R}\times \omega )\,:\, \nabla u\text{ is uniformly continuous}, \partial _{\nu } u(x_{1},y)=0,\ y\in \partial \omega \right\} \end{equation*}

with the $C^1$ norm $\|u\|=\sup _{x\in \mathbb{R}\times \omega }(|u(x)|+|\nabla u(x)|)$ , where $|\nabla u(x)|=\Sigma _{i=1}^N|u_{x_i}(x)|$ . Let

\begin{equation*} X^{+}=\{u\in X\,:\, u(x)\geq 0, x\in \mathbb{R}\times \omega \}. \end{equation*}

For any $u_{0}(\cdot )\in X^{+}$ , let $u(t,x;\,u_{0})$ be the unique solution of (1.1) with $u(0,x;\,u_{0})=u_{0}(x)$ for all $t\geq 0$ .

Theorem 1.1. Assume that (H1)-(H4) hold true. Then the following properties hold:

  1. (1) If $\lambda _{\infty }\lt 0$ , for any $u_{0}\in X^{+}$ , there is

    \begin{equation*} \lim _{t\rightarrow \infty }u(t,\cdot ;\,u_{0})=0 \end{equation*}
    uniformly with respect to $x\in \Omega$ .
  2. (2) If $\lambda _{\infty }\gt 0$ , then for any $u_{0}\in X^{+}\setminus \{0\}$ and any $L\gt 0$ , there holds

    \begin{equation*} \liminf _{t\rightarrow \infty }\inf _{x_{1}\in [{-}L,L],y\in \omega }u\left (t,x_{1}+\int ^{t}_{0}c(s)ds,y;\,u_{0}\right )\gt 0. \end{equation*}

A forced wave solution $U(t,x_{1},y)$ of (1.1) is a positive, bounded and almost-periodic entire solution $V(t,x_{1},y)$ of (1.2) with the form

(1.5) \begin{equation} U(t,x_{1},y)=V\left (t,x_{1}-\int ^{t}_{0}c(s)ds,y\right ),\quad t\in \mathbb{R}, (x_{1},y)\in \mathbb{R}\times \omega . \end{equation}

Theorem 1.2. Assume that (H1)-(H4) hold true. If $\lambda _{\infty }\gt 0$ , then (1.1) admits a unique forced wave solution $U(t,x_{1},y)$ with

\begin{equation*} \lim _{|x_{1}|\rightarrow \infty }U(t,x_{1},y)=0 \end{equation*}

uniformly with respect to $t\in \mathbb{R}$ and $y\in \omega$ . Moreover, for any $u_{0}\in X^{+}\setminus \{0\}$ , there holds

\begin{equation*} \lim _{t\rightarrow \infty }(u(t,x_{1},y;\,u_{0})-U(t,x_{1},y))=0 \end{equation*}

uniformly with respect to $x_{1}\in \mathbb{R}$ and $y\in \omega$ .

We point out that Theorem 1.1 follows from Theorems 3.1 and 3.2. Theorem 1.2 follows directly from Theorem 4.1. From Theorem 1.1, we know that the sign of approximate principal Lyapunov exponent $\lambda _{\infty }$ is the sharp threshold for the persistence criterion. When $\lambda _{\infty }\gt 0$ , the species will persist and (1.1) exists a unique, bounded and positive forced wave solution $U(t,x_{1},y)$ in cylindrical type domain.

In order to analyse the effect of the shift speed on $\lambda _{\infty }$ , we set $c(t)=c+A\sigma (t)$ , where $A$ is positive constant and $A\sigma (t)$ is the fluctuation on the shifting speed $c$ . Let $\lambda ^{A}_{\infty }(c)$ be the approximate principal Lyapunov exponent depend on $c$ and $A$ . By using the Liouville transform, Theorem 4.2 in Section 4 shows that there is a critical speed $c^{*}\gt 0$ such that $\lambda ^{0}_{\infty }(c)\gt 0$ for $c\in [0,c^{*})$ and $\lambda ^{0}_{\infty }(c)\lt 0$ for $c\gt c^{*}$ when $A=0$ . This means that the species will persist when the climate envelope shifts with a slower shift speed. In this case, we also show that the force wave solution $U(t,x_{1},y)$ is exponentially decay, see Theorem 4.3. When $A\gt 0$ , we only show that $\lambda ^{A}_{\infty }(c)$ has a lower bounded depend on $c$ , see Theorem 4.2 (2). Due to the presence of cylinder domain and time almost periodic case, the characterisation of influence of the fluctuation on the shifting speed $A\sigma (t)$ on $\lambda ^{A}_{\infty }(c)$ tends to be much more difficult. We leave it as an open problem.

We also remark here that we only consider the propagation dynamics of time-dependent reaction-diffusion equations (1.1) under (H4). Specifically, (H4) implies that the favourable habitat for species growth is contained in a bounded region, i.e., the favourable environment is surrounded by an unfavourable one. When

\begin{equation*} \lim _{r\rightarrow \infty }\sup _{x_{1}\gt r,t\in \mathbb{R},y\in \omega }g(t,x_{1},y,0)\lt 0,\, \lim _{r\rightarrow \infty }\sup _{x_{1}\lt -r,t\in \mathbb{R},y\in \omega }g(t,x_{1},y,0)\gt 0, \end{equation*}

the environment is favourable at $+\infty$ and unfavourable at $-\infty$ . Moreover, the case

\begin{equation*} \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }g(t,x_{1},y,0)\gt 0 \end{equation*}

implies the scenario that unfavourable environment is surrounded by favourable one. There is still few works on these two cases for time-dependent reaction-diffusion equations in an infinite cylinder and we will continue to study these two cases in the future. Very recently, what is worth mentioning is that Zhang and Zhao [Reference Zhang and Zhao31] studied spreading properties and forced travelling waves of reaction-diffusion equation in a time-heterogenous shifting environment in the case that favourable environment is surrounded by unfavourable oneenvironment is favourable at $+\infty$ and unfavourable at $-\infty$ .

The rest of the paper is organised as follows. In Section 2, we will study the Lyapunov exponent theory of Neumann problem (1.3) and mixed boundary conditions problem (1.4). In Section 3, we consider the long-time dynamical behaviours of (1.1) with the initial value. and prove Theorem 1.1. We will prove the existence, uniqueness, stability and exponential decay of forced wave solutions of (1.1) in Section 4.

2. Lyapunov exponent theory with mixed boundary conditions

In this section, we study the principal spectral theory for time almost periodic parabolic equation with mixed Dirichlet–Neumann boundary condition in the finite cylinders $({-}L,L)\times \omega$ for any $L\gt 0$ . Recall that $\Omega =\mathbb{R}\times \omega$ . Denote

\begin{equation*} \Omega _{L}=({-}L,L)\times \omega \quad \text{for any }L\gt 0. \end{equation*}

Let $b_{i}(t,x)\, (i=1,\ldots ,N), b_{0}(t,x)$ be bounded and continuous in $\mathbb{R}\times \Omega$ . Assume that $b_{i}(t,x)\, (i=1,\ldots ,N)$ and $b_{0}(t,x)$ are time almost-periodic in $t$ uniformly for $x\in \Omega$ . For each $L\gt 0$ , we consider the following linear problem

(2.1) \begin{equation} \begin{cases} \partial _{t}u=\Delta u+\sum ^{N}_{i=1}b_{i}(t,x)\frac {\partial u}{\partial x_{i}}+b_{0}(t,x)u,\quad t\gt 0,\,x\in ({-}L,L)\times \omega ,\\[4pt] \partial _{\nu }u=0,\quad t\gt 0,\,x\in ({-}L,L)\times \partial \omega ,\\[4pt] u(t,-L,y)=u(t,L,y)=0,\quad t\gt 0,\,y\in \omega . \end{cases} \end{equation}

The principal spectral theory of linear parabolic problem with Dirichlet, Neumann boundary conditions or periodic boundary condition has been widely studied, for example, see [Reference Huston, Shen and Vickers12, Reference Mierczyński and Shen16Reference Mierczyński and Shen18, Reference Shen23Reference Shen and Yi25, Reference Yi29] and so on. Note that the linear problem (2.1) is considered in the finite cylinders $\Omega _{L}$ with Neumann boundary conditions on the sides $({-}L,L)\times \partial w$ and Dirichlet boundary conditions on the bases $\{\pm L\}\times \omega$ , which can be called as mixed Dirichlet–Neumann boundary conditions as that in [Reference Berestycki and Rossi3]. In this section, we will develop the principal spectral theory for time almost periodic parabolic equation in finite cylinder with mixed Dirichlet–Neumann boundary conditions.

Let $b\,:\!=\,(b_{i},b_{0})\,:\!=\,(\{b_{i}\}^{N}_{i=1},b_{0})$ . Define

\begin{equation*} \mathrm{Y}(b)=cl\{b\cdot s\,:\, s\in \mathbb{R}\}, \end{equation*}

where $b\cdot s(t,x)=\sigma _{s}b(t,x)=b(t+s,x)$ and the closure is taken under the topology of local uniform convergence. Then, $(\mathrm{Y}(b),(\sigma _{t})_{t\in \mathbb{R}})$ is a compact flow and unique ergodic, which implies that $\mathrm{Y}(b)$ is unique ergodic and minimal. For convenience, we write $\mathrm{Y}$ for $\mathrm{Y}(b)$ .

Let

\begin{equation*} X_{L}=\{u\in C^1([{-}L,L]\times \omega ,\mathbb{R})\,:\, \partial _{\nu } u=0\text{ on } ({-}L,L)\times \partial \omega ,\, u({-}L,y)=u(L,y)=0, y\in \omega \} \end{equation*}

be equipped with the $C^1$ norm $\|u\|_{X_{L}}=\max _{[{-}L,L]\times \omega }(|u(x)|+|\nabla u(x)|)$ , where $|\nabla u(x)|=\Sigma _{i=1}^N|u_{x_i}(x)|$ . Let

\begin{equation*} X^{+}_{L}=\{u\in X_{L}\,:\,u\geq 0, x\in [{-}L,L]\times \omega \}. \end{equation*}

Assume $\tilde X_{L}\subset L^p(\Omega _L)$ ( $p\gt n$ ) be a fractional power space of $-\Delta \,:\,\mathcal{D}\to L^p(\Omega _L)$ satisfying $\tilde X_{L}\hookrightarrow C^{\alpha }(\Omega _L)$ for some $1\lt \alpha \lt 2$ , where $\mathcal{D}=\{v\in H^{2,p}(\Omega _L)\,:\,u({-}L,y)=u(L,y)=0, \partial _{\nu } u(x_1,y)=0, y\in \partial \omega \}$ . Then, for any $\widetilde {b}\in \mathrm{Y}$ and $u_{0}\in \tilde X_{L}$ , there is a unique classical solution $u(t,\cdot ;\,u_{0},\widetilde {b})$ of (2.1) with the initial condition $u(0,\cdot ;\,u_{0},\widetilde {b})=u_{0}\in \tilde X_{L}$ . Put

\begin{equation*} U_{L}(t,\widetilde {b})u_{0}\,\,:\!=\,u(t,\cdot ;\,u_{0},\widetilde {b})\quad \text{for }u_{0}\in \tilde X_{L}. \end{equation*}

For convenience of expression, in the following, we still write $b$ for $\widetilde {b}$ . Then, (2.1) generates a skew-product semiflow on $\tilde X_{L}\times \mathrm{Y}(b)$ :

\begin{align*} \Pi _{t}\,:\,\tilde X_{L}\times \mathrm{Y}&\rightarrow \tilde X_{L}\times \mathrm{Y},\, t\geq 0,\\ \Pi _{t}(u_{0},b)=&(U_{L}(t,b)u_{0},b\cdot t). \end{align*}

Let

\begin{equation*} \tilde X^{+}_{L}=\{u\in \tilde X_{L}\,:\,u\geq 0, x\in [{-}L,L]\times \omega \}. \end{equation*}

Then, we have the following exponential separation theorem from [Reference Mierczyński and Shen17].

Theorem 2.1 (Exponential Separation). There are subspace $\tilde X^{1}_{L}(b), \tilde X^{2}_{L}(b)$ of $\tilde X_{L}$ such that $\tilde X^{1}_{L}(b), \tilde X^{2}_{L}(b)$ are continuous in $b\in \mathrm{Y}$ , and satisfy the following properties:

  1. (1) $\tilde X_{L}=\tilde X^{1}_{L}(b)\oplus \tilde X^{2}_{L}(b)$ for any $b\in \mathrm{Y}$ .

  2. (2) $\tilde X^{1}_{L}(b)=\textrm {span}\{\widetilde {\phi }_{L}(b)\}$ , $\widetilde {\phi }_{L}(b)\in Int(\tilde X^{+}_{L})$ and is continuous in $b$ and $\|\widetilde {\phi }_{L}(b)\|_{\tilde X_{L}}=1$ for any $b\in \mathrm{Y}$ .

  3. (3) $\tilde X^{2}_{L}(b)\cap Int(\tilde X^{+}_{L})=\emptyset$ for any $b\in \mathrm{Y}$ .

  4. (4) $U_{L}(t,b)\tilde X^{1}_{L}(b)=\tilde X^{1}_{L}(\sigma _{t}b)$ and $U_{L}(t,b)\tilde X^{2}_{L}(b)\subset \tilde X^{2}_{L}(\sigma _{t}b)$ for any $b\in \mathrm{Y}$ and $t\gt 0$ .

  5. (5) There are $M,\gamma \gt 0$ such that

    \begin{equation*} \frac {\|U_{L}(t,b)\widetilde {\phi }_{L}(b)\|_{\tilde X_{L}}}{\|U_{L}(t,b)w\|_{\tilde X_{L}}}\leq Me^{-\gamma t} \end{equation*}
    for any $t\gt 0$ , $b\in \mathrm{Y}$ and $w\in \tilde X^{2}_{L}(b)$ with $\|w\|_{\tilde X_{L}}=1$ .

Let

\begin{equation*} \phi _{L}(b)=\frac {\widetilde {\phi }_{L}(b)}{\|\widetilde {\phi }_{L}(b)\|_{L^{2}(\Omega _{L})}} \end{equation*}

and

\begin{equation*} \kappa _{L}(b)=\langle \Delta \phi _{L}(b)+\sum ^{N}_{i=1}b_{i}(t,x)\frac {\partial \phi _{L}(b)}{\partial x_{i}}+b_{0}(t,x)\phi _{L}(b),\phi _{L}(b)\rangle , \end{equation*}

where $\langle \cdot ,\cdot \rangle$ is the inner product in $L^{2}(\Omega _{L})$ . Then, $\kappa _{L}(b)$ is continuous with respect to $b\in \mathrm{Y}$ . Set

\begin{equation*} \eta _{L}(t,b)=\|U_{L}(t,b)\phi _{L}(b)\|_{L^{2}(\Omega _{L})}. \end{equation*}

Then, we have

\begin{equation*} \frac {d\eta _{L}(t,b)}{dt}=\kappa _{L}(\sigma _{t}b)\eta _{L}(t,b) \end{equation*}

and

\begin{equation*} \eta _{L}(t,b)=e^{\int ^{t}_{0}\kappa _{L}(\sigma _{\tau }b)d\tau }. \end{equation*}

Then,

\begin{equation*} \phi _{L}(\sigma _{t}b)(x)\,:\!=\,\frac {U_{L}(t,b)\phi _{L}(b)}{\|U_{L}(t,b)\phi _{L}(b)\|_{L^{2}}} \end{equation*}

satisfies

(2.2) \begin{equation} \begin{cases} \dfrac {\partial \phi _{L}(\sigma _{t}b)}{\partial t}=\Delta \phi _{L}(\sigma _{t}b)+\sum ^{N}_{i=1}b_{i}(t,x)\dfrac {\partial \phi _{L}(\sigma _{t}b)}{\partial x_{i}}+b_{0}(t,x)\phi _{L}(\sigma _{t}b)\\[5pt] \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad -\kappa _{L}(\sigma _{t}b)\phi _{L}(\sigma _{t}b),\quad t\gt 0,\,x\in ({-}L,L)\times \omega ,\\[5pt] \partial _{\nu }\phi _{L}(\sigma _{t}b)=0,\quad t\gt 0,\,x\in ({-}L,L)\times \partial \omega ,\\[5pt] \phi _{L}(\sigma _{t}b)({-}L,y)=\phi _{L}(\sigma _{t}b)(L,y)=0,\quad t\gt 0,\,y\in \omega . \end{cases} \end{equation}

Define $\|U_{L}(t,b)\|=\sup _{u\in \tilde X_L, \, \|u\|_{\tilde X_L}=1}\|U_{L}(t,b)u\|_{\tilde X_L}$ . Note that $\mathrm{Y}$ is unique ergodic, then

\begin{equation*} \lim _{t-s\rightarrow \infty }\frac {1}{t-s}\ln {\|U_{L}(t-s,\sigma _{s}b)\|} =\lim _{t-s\rightarrow \infty }\frac {1}{t-s}\int ^{t}_{s}\kappa _{L}(\sigma _{\tau }b)d\tau \end{equation*}

for all $b\in Y$ .

Definition 2.1 (Principal Lyapunov exponent). The number

\begin{equation*} \lambda _{L}(\mathrm{Y})\,:\!=\,\lim _{t-s\rightarrow \infty }\frac {1}{t-s}\ln {\|U_{L}(t-s,\sigma _{s}b)\|}, \quad \forall b\in \mathrm{Y} \end{equation*}

is called the principal Lyapunov exponent of (2.1).

Note that $U_{L}(t,b)$ can act on $X_L$ , and the principal Lyapunov exponents of $U_{L}(t,b)$ on $\tilde X_L$ and $X_L$ coincide. Then, we have the following

Lemma 2.1. There is a continuous function $\phi _L\,:\,Y\to X_L^{+}\setminus \{0\}$ such that the following hold for any $\tilde b\in Y$ :

  1. (1) $\|\phi _L(\tilde b)\|_{\infty }=1$ ,

  2. (2) $U_L(t,\tilde b)\phi _L(\tilde b)=\|U_L(t,\tilde b)\phi _L(\tilde b)\|_{\infty }\phi _L(\tilde b\cdot t)$ ,

  3. (3) $\lim _{t\to \infty }\dfrac {\ln \|U_L(t,\tilde b)\phi _L(\tilde b)\|_{\infty }}{t}=\lambda _L(Y)$ ,

  4. (4) For any $\phi _{0}\in X_{L}^{+}\setminus \{0\}$ , $\lim _{t\to \infty }\dfrac {\ln \|U_L(t,\tilde b)\phi _{0}\|_{\infty }}{t}=\lambda _L(Y)$ .

Remark 2.1.

  1. (1) Observing that $\lambda _{L}(\mathrm{Y})$ and $\phi _{L}(\sigma _{t}b)(x)$ are analogues of principal eigenvalue and principal eigenfunctions of elliptic problem, respectively. We call $\textrm {span}\{\phi _{L}(\sigma _{t}b)(x)\}_{t\in \mathbb{R}}$ as the principal Floquet bundle of (2.1) associate to the principal Lyapunov exponent.

  2. (2) The principal eigenvalue of the following elliptic problem with mixed Dirichlet–Neumann boundary conditions,

    (2.3) \begin{equation} \begin{cases} -\Delta u-\sum ^{N}_{i=1}b_{i}(x)\frac {\partial u}{\partial x_{i}}-b_{0}(x)u=\lambda _{L}u,\quad x\in ({-}L,L)\times \omega ,\\[4pt] \partial _{\nu }u=0\quad \text{on }({-}L,L)\times \partial \omega ,\\[4pt] u({-}L,y)=u(L,y)=0\quad \text{on }y\in \overline {\omega } \end{cases} \end{equation}
    has been studied in [Reference Berestycki and Rossi3 , Theorem 3.1]. Their results show that for any $L\gt 0$ , there exists a unique principal eigenvalue $\lambda _L$ of (2.3) corresponding to a positive eigenfunction $\psi _{L}\in W^{2,p}(\Omega _{L})$ , for any $p\gt 1$ . Moreover, $\lambda _{L}$ converges to $\lambda _{1}(\Omega )$ as $L\rightarrow \infty$ , where $\lambda _{1}(\Omega )$ is the generalised Neumann principal eigenvalue defined by
    \begin{align*} \lambda _{1}(\Omega )\,:\!=\,\sup \{\lambda \in \mathbb{R}\,:\,\exists \phi \gt 0,\,\Delta \phi +\sum ^{N}_{i=1}b_{i}(x)\frac {\partial \phi }{\partial x_{i}}+b_{0}(x)\phi +\lambda u&\leq 0, \text{ a.e. in } \Omega ,\\ \partial _{\nu }\phi &\geq 0 \text{ on } \partial \Omega \}. \end{align*}
    We point out in $\lambda _{1}(\Omega )$ , the function $\phi$ is understood to belong to $W^{2,p}(({-}L,L)\times \omega )$ for some $p\gt N$ and every $L\gt 0$ .

Lemma 2.2. Set $\lambda (L)\,:\!=\,\lambda _{L}(\mathrm{Y})$ . Then, the function $\lambda (L)\,:\,\mathbb{R}^{+}\rightarrow \mathbb{R}$ is nondecreasing in $L$ and $\lim _{L\rightarrow \infty }\lambda (L)$ exists.

Proof. For any $L\gt 0$ , let $\phi _{L}(\sigma _{t}b)(x)$ be as in Lemma 2.1. Let $0\lt L_{1}\lt L_{2}$ be fixed. Then, there exists $\epsilon _{0}\in (0,1)$ such that

\begin{equation*} \epsilon _{0}\phi _{L_{1}}(\sigma _{t}b)(x)\lt \phi _{L_{2}}(\sigma _{t}b)(x)\quad \text{on }[{-}L_{1},L_{1}]\times \omega . \end{equation*}

It then follows from the comparison principle that

\begin{equation*} \epsilon _{0}U_{L_{1}}(t,b)\phi _{L_{1}}(\sigma _{t}b)(x)\lt U_{L_{2}}(t,b)\phi _{L_{2}}(\sigma _{t}b)(x)\quad \text{on }[{-}L_{1},L_{1}]\times \omega . \end{equation*}

Then

\begin{align*} \lambda (L_{2})=\lim _{t\rightarrow \infty }\frac {\ln {\|U_{L_{2}}(t,b)\phi _{L_{2}}(\sigma _{t}b)\|_{\infty }}}{t} \geq \lim _{t\rightarrow \infty }\frac {\ln {\|\epsilon _{0}U_{L_{1}}(t,b)\phi _{L_{1}}(\sigma _{t}b)\|_{\infty }}}{t}=\lambda (L_{1}), \end{align*}

which implies that $\lambda (L)$ is non-decreasing in $L$ .

Let $b_{L}\,:\!=\,\sup _{t\in \mathbb{R},x\in \Omega _{L}}b_{0}(t,x)$ . Then, $e^{b_{L}t}$ is a supersolution of (2.1), and thus,

\begin{equation*} U_{L}(t,b)\phi _{L}(\sigma _{t}b)\leq e^{b_{L}t}\quad \text{in }\Omega _{L} \end{equation*}

for all $t\geq 0$ . It then follows that

\begin{equation*} \lambda (L)\leq \lim _{t\rightarrow \infty }\frac {\ln {e^{b_{L}t}}}{t}=b_{L}. \end{equation*}

Hence, $\lim _{L\rightarrow \infty }\lambda (L)$ exists. This completes the proof.

From Lemma 2.2, we know that $\lim _{L\rightarrow \infty }\lambda _{L}(\mathrm{Y})$ exists. Set

\begin{equation*} \lambda _{\infty }(\mathrm{Y})\,:\!=\,\lim _{L\rightarrow \infty }\lambda _{L}(\mathrm{Y}). \end{equation*}

Then $\lambda _{\infty }(\mathrm{Y})\lt \sup _{t\in \mathbb{R},x\in \Omega }b_{0}(t,x)$ and $\lambda _{\infty }(\mathrm{Y})$ is called the approximate principal Lyapunov exponent of the following equation

(2.4) \begin{equation} \begin{cases} \partial _{t}u=\Delta u+\sum ^{N}_{i=1}b_{i}(t,x)\frac {\partial u}{\partial x_{i}}+b_{0}(t,x)u,\quad x\in \mathbb{R}\times \omega ,\\[4pt] \partial _{\nu }u=0\quad \text{on }\mathbb{R}\times \partial \omega . \end{cases} \end{equation}

Let $X$ and $X^{+}$ be as in Section 1. Denote by $U(t,b)u_{0}$ the unique classical solution of (2.4) with the initial value $u_{0}\in X$ and define $\|U(t,b)\|=\sup _{u\in X, \, \|u\|=1}\|U(t,b)u\|$ . It follows from the almost-periodicity of $b(t,x)$ and the subadditive ergodic theorem (see [Reference Kingman14]) that $\lim _{t\rightarrow \infty }\frac {\ln {U(t,b)}}{t}$ exists for all $b\in Y$ . Then, we have the following definition for the principal Lyapunov exponent of (2.4).

Definition 2.2 (Principal Lyapunov exponent). The number

\begin{equation*} \lambda (\mathrm{Y})\,:\!=\,\lim _{t-s\rightarrow \infty }\frac {1}{t-s}\ln {\|U(t-s,\sigma _{s}b)\|}, \quad \forall b\in \mathrm{Y} \end{equation*}

is called the principal Lyapunov exponent of (2.4).

In the following, we show that the connections between the approximate principal Lyapunov exponent $\lambda _{\infty }(\mathrm{Y})$ and the principal Lyapunov exponent $\lambda (\mathrm{Y})$ .

Lemma 2.3. $\lambda _{\infty }(\mathrm{Y})$ and $\lambda (\mathrm{Y})$ have the same sign. In particular, $\lambda _{\infty }(\mathrm{Y})=\lambda (\mathrm{Y})$ for $\lambda _{\infty }(\mathrm{Y})\geq \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ .

Proof. In the following proof, to emphasis the dependence of $\mathrm{Y}$ on $b$ , we write it as $\mathrm{Y}(b)$ . We divide the proof into two cases: $\lambda _{\infty }(\mathrm{Y}(b))\geq \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ and $\lambda _{\infty }(\mathrm{Y}(b))\lt \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ .

Firstly, we consider the case $\lambda _{\infty }(\mathrm{Y}(b))\geq \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ . By definitions of $\lambda _{\infty }(Y(b))$ and $\lambda (Y(b))$ , we have $\lambda _{\infty }(Y(b))\leq \lambda (Y(b))$ . Assume that $\lambda _{\infty }(Y(b))\lt \lambda (Y(b))$ . Without loss of generality, we may assume that

\begin{equation*} \lambda _{\infty }(Y(b))\lt 0\lt \lambda (Y(b)). \end{equation*}

In fact, we can take $\lambda _{0}\in (\lambda _{\infty }(Y(b)),\lambda (Y(b)))$ and replace $b_{0}(t,x)$ by $\overline {b}_{0}(t,x)=b_{0}(t,x)-\lambda _{0}$ . Then

\begin{equation*} \lambda _{\infty }(Y(\overline {b}))=\lambda _{\infty }(Y(b))-\lambda _{0}\lt 0\lt \lambda -\lambda _{0}=\lambda (Y(\overline {b})) \end{equation*}

and

\begin{equation*} \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }\overline {b}_{0}(t,x_{1},y)\lt 0. \end{equation*}

Consider

(2.5) \begin{equation} \begin{cases} \partial _{t}u=\Delta u+\sum ^{N}_{i=1}a_{i}(t,x)\frac {\partial u}{\partial x_{i}}+ug(t,x,u),\quad x\in \mathbb{R}\times \omega ,\\[4pt] \partial _{\nu }u=0\quad \text{on }\mathbb{R}\times \partial \omega . \end{cases} \end{equation}

Denote $v(t,x;\,v_{0})$ be the solution of (2.5) with initial value $v(t,x;\,v_{0})=v_{0}\in X^{+}$ . Choose $v^{*}_{0}\equiv 1$ , similar to that in Theorem 3.1 later, we have that $\lim _{t\rightarrow \infty }\|v(t,\cdot ;\,v^{*}_{0})\|_{\infty }=0$ for $\lambda _{\infty }(Y(b))\lt 0$ . Note that $\lambda (Y(b))\gt 0$ and $g$ is uniformly continuous on $\mathbb{R}\times \Omega \times [0,\delta ]$ for any $\delta \gt 0$ , then there exists large $T\gt 0$ such that

\begin{equation*} g(t,x,0)\leq g(t,x,v(t,x;\,v^{*}_{0}))+\frac {\lambda (Y(b))}{2} \end{equation*}

for any $t\geq T$ and $x\in \mathbb{R}\times \omega$ . By comparison principle,

(2.6) \begin{equation} U(t,\sigma _{T}b)v(T,\cdot ;\,v^{*}_{0})\leq e^{\frac {\lambda (Y(b))}{2}t}v(t+T,\cdot ;\,v^{*}_{0}),\quad \forall t\geq 0. \end{equation}

Due to that $v^{*}_{0}$ is uniform positive and $g$ is bounded on $\mathbb{R}\times \Omega \times [0,\delta ]$ for any $\delta \gt 0$ ,

\begin{equation*} \inf _{x\in \mathbb{R}\times \omega }v(T,\cdot ;\,v^{*}_{0})\gt 0. \end{equation*}

Then for any $v_{0}\in X^{+}$ with $\|v_{0}\|=1$ , there is a constant $M\gt 0$ such that

\begin{equation*} -Mv(T,\cdot ;\,v^{*}_{0})\leq v_{0}\leq Mv(T,\cdot ;\,v^{*}_{0}), \quad x\in \mathbb{R}\times \omega . \end{equation*}

Then the comparison principle implies that

\begin{equation*} -MU(t,\sigma _{T}b)v(T,\cdot ;\,v^{*}_{0})\leq U(t,\sigma _{T}v_{0})\leq MU(t,\sigma _{T}b)v(T,\cdot ;\,v^{*}_{0}),\quad t\geq 0, \end{equation*}

which implies that

\begin{equation*} \|U(t,\sigma _{T}b)v_{0}\|_{\infty }\leq M\|U(t,\cdot )v(T,\cdot ;\,v^{*}_{0})\|_{\infty },\quad \forall t\geq 0. \end{equation*}

Then by the definition of $\lambda (Y(b))$ and together with (2.6), we have that

\begin{equation*} 0\lt \lambda (Y(b))\leq \frac {\lambda (Y(b))}{2}, \end{equation*}

which is a contradiction. Therefore, $\lambda _{\infty }(Y(b))=\lambda (Y(b))$ and they have the same sign in the case $\lambda _{\infty }(\mathrm{Y}(b))\geq \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ .

Secondly, we consider the case $\lambda _{\infty }(\mathrm{Y}(b))\lt \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ . In this case, we show that if $\lambda _{\infty }(Y(b))\lt 0$ , then $\lambda (Y(b))\lt 0$ . Suppose that $\lambda (Y(b))\geq 0$ . Then there exists $\lambda _{0}\gt 0$ such that

\begin{equation*} \lambda _{\infty }(Y(b))+\lambda _{0}\lt \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)+\lambda _{0}\lt 0\lt \lambda (Y(b))+\lambda _{0}. \end{equation*}

Let $a(t,x)=g(t,x,0)+\lambda _{0}$ . Then,

\begin{equation*} \lambda _{\infty }(Y(b^{\prime }))\lt \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }a(t,x_{1},y)\lt 0\lt \lambda (Y(b^{\prime })). \end{equation*}

Similar to above, we have

\begin{equation*} \lambda _{\infty }(Y(b^{\prime }))\lt \frac {\lambda _{\infty }(Y(b^{\prime }))}{2}, \end{equation*}

which is a contradiction. Thus $\lambda (Y(b))\lt 0$ . This completes the proof.

Proposition 2.1. Suppose that $b_{i}(t,x)\ (i=1,\ldots ,N)$ and $b_{0}(t,x)$ are periodic in $t$ . If $\lambda _{\infty }\gt \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ , then $\lambda _{\infty }$ is the principal eigenvalue (i.e. the eigenvalue with large real part) of the following linear periodic equation

\begin{equation*} \begin{cases} \frac {\partial u}{\partial t}=\Delta u+\sum ^{N}_{i=1}b_{i}(t,x)\frac {\partial u}{\partial x_{i}}+b_{0}(t,x)u,\quad t\gt 0,\,x\in \mathbb{R}\times \omega ,\\[5pt] \partial _{\nu }u=0,\quad t\gt 0,\,x\in \mathbb{R}\times \partial \omega . \end{cases} \end{equation*}

Proof. Since $b_{i}(t,x)\ (i=1,\ldots ,N)$ and $b_{0}(t,x)$ are periodic in $t$ , by the definition of $\lambda _{L}$ , we know that $\lambda _{L}$ is the principal eigenvalue of (2.1) for any $L\gt 0$ . Thus, there exists a bounded positive time periodic eigenfunction $\phi _{L}$ of (2.1) corresponding to $\lambda _{L}$ , that is,

(2.7) \begin{equation} \begin{cases} \frac {\partial \phi _{L}}{\partial t}=\Delta \phi _{L}+\sum ^{N}_{i=1}b_{i}(t,x)\frac {\partial \phi _{L}}{\partial x_{i}}+b_{0}(t,x)\phi _{L}-\lambda _{L}\phi _{L},\quad t\gt 0,\,x\in ({-}L,L)\times \omega ,\\[5pt] \partial _{\nu }\phi _{L}=0,\quad t\gt 0,\,x\in ({-}L,L)\times \partial \omega ,\\[5pt] \phi _{L}(t,-L,y)=\phi _{L}(t,L,y)=0,\quad t\gt 0,\,y\in \omega ,\\[5pt] \phi _{L}\text{ is periodic in }t. \end{cases} \end{equation}

Normialised $\phi _{L}$ by $\max _{\mathbb{R}\times ({-}L,L)\times \omega }\phi _{L}(t,x_{1},y)=1$ and let $(t_{L},x_{1L},y_{L})\in [0,T]\times ({-}L,L)\times \omega$ be such that $\phi _{L}(t_{L},x_{1L},y_{L})=1$ . Extending by reflection the function $\phi _{L}$ to large cylinders, as done in [Reference Berestycki and Rossi3, Appendix A], then $\phi _{L}$ is uniformly bounded in $\mathbb{R}\times ({-}L,L)\times \omega$ . Hence, by standard parabolic regularity estimates, there exists $\phi _{\infty }$ such that $\phi _{L}(t,x)\rightarrow \phi _{\infty }(t,x)$ locally uniformly in $\mathbb{R}\times ({-}L,L)\times \omega$ as $L\rightarrow \infty$ , where $\phi _{\infty }$ is a bounded, nonnegative and time periodic function satisfying

(2.8) \begin{equation} \begin{cases} \frac {\partial \phi _{\infty }}{\partial t}=\Delta \phi _{\infty }+\sum ^{N}_{i=1}b_{i}(t,x)\frac {\partial \phi _{\infty }}{\partial x_{i}}+b_{0}(t,x)\phi _{\infty }-\lambda _{\infty }\phi _{\infty },\quad t\gt 0,\,x\in \mathbb{R}\times \omega ,\\[4pt] \partial _{\nu }\phi _{\infty }=0,\quad t\gt 0,\,x\in \mathbb{R}\times \partial \omega ,\\[4pt] \phi _{\infty }\text{ is periodic in }t. \end{cases} \end{equation}

Consider (2.7) at point $(t_{L},x_{1L},y_{L})$ , we have

\begin{equation*} 0=\Delta \phi _{L}(t_{L},x_{1L},y_{L})+b_{0}(t_{L},x_{1L},y_{L})\phi _{L}-\lambda _{L}\phi _{L}\leq (b_{0}(t_{L},x_{1L},y_{L})-\lambda _{L})\phi _{L}. \end{equation*}

Since $\lambda _{\infty }\gt \lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }b_{0}(t,x_{1},y)$ , we must have that $x_{1L}$ is bounded as $L\rightarrow \infty$ . Thus, $(t_{L},x_{1L},y_{L})\rightarrow (t^*,x^{*}_{1},y^{*})$ as $L\rightarrow \infty$ , and $\phi _{\infty }(t^*,x^{*}_{1},y^{*})=1$ . The strong maximum principal yields that $\phi _{\infty }\gt 0$ in $\mathbb{R}\times \Omega$ . Then, $\lambda _{\infty }$ is the principal eigenvalue of (2.8) with principal eigenfunction $\phi _{\infty }$ .

3. Large-time dynamical behaviour in infinite cylinder

In this section, we consider the long-time dynamical behaviour of the solution $u(t,x_{1},y;\,u_{0})$ of (1.1) in the infinite cylinder and prove Theorem 1.1.

Let $X$ and $X^{+}$ be given in Section 1. By the semigroup theory, for any initial value $v_{0}\in X^{+}$ , (1.2) admits a unique solution $v(t,x;\,v_{0})$ with $v(0,x;\,v_{0})=v_{0}$ . Set $S=\max \{M_{0},\|v_{0}\|_{L^{\infty }(\Omega )}\}$ , where $M_{0}$ is the positive constant in (H3). Due to that $0$ and $S$ are a sub-and supersolution of (1.2) with initial value $v_{0}\in X^{+}$ , then $0\leq v(t,x;\,v_{0})\leq S$ in $\overline {\Omega }$ . By extending $v(t,x;\,v_{0})$ to a large cylinder $(\mathbb{R}\times \overline {\omega })\supset \supset \Omega$ through reflection (see [Reference Berestycki and Rossi3, Appendix A]) and applying the parabolic maximum principle, we find that

\begin{equation*} 0\lt v(t,x_{1},y;\,v_{0})\leq S\quad \text{in }\mathbb{R}^{+}\times \Omega . \end{equation*}

Take $b_{1}(t,x)=c(t)$ , $b_{i}(t,x)=0\, (i=2,\ldots ,N)$ and $b_{0}(t,x)=g(t,x,0)$ in (2.1). Then for any $L\gt 0$ , we have the following linear problem

(3.1) \begin{equation} \begin{cases} \partial _{t}u=\Delta u+c(t)\partial _{1}u+g(t,x,0)u,\quad t\gt 0,\,x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }u=0,\quad t\gt 0,\,x\in ({-}L,L)\times \partial \omega ,\\ u(t,-L,y)=u(t,L,y)=0,\quad t\gt 0,\,y\in \omega . \end{cases} \end{equation}

By Definition 2.1, let $\lambda _{L}$ be the principal Lyapunov exponent of (3.1). Then, all results in Section 2 hold true for $\lambda _{L}$ , particularly, $\lambda _{\infty }\,:\!=\,\lim _{L\rightarrow \infty }\lambda _{L}$ .

Theorem 3.1. Assume that (H1)-(H4) hold true. If $\lambda _{\infty }\lt 0$ , then for any $v_{0}\in X^{+}$ ,

(3.2) \begin{equation} \lim _{t\rightarrow \infty }v(t,x_{1},y;\,v_{0})=0 \end{equation}

uniformly for $(x_{1},y)\in \Omega$ .

Proof. Before proving (3.2), we first show that

(3.3) \begin{equation} \lim _{t\rightarrow \infty ,\ |x_{1}|\rightarrow \infty }v(t,x_{1},y;\,v_{0})=0\quad \text{ uniformly for } y\in \omega . \end{equation}

For any fixed $v_{0}\in X^{+}$ , we assume that (3.3) does not hold. Then there exist $\epsilon _{0}\gt 0$ , $\{t_{n}\}\subset (0,\infty )$ and $\{x_{1,n}\}\subset \mathbb{R}$ with $t_{n}\rightarrow \infty$ and $|x_{1,n}|\rightarrow \infty$ , as $n\rightarrow \infty$ , such that

\begin{equation*} v(t_{n},x_{1,n},y;\,v_{0})\geq \epsilon _{0}\quad \text{for some }y\in \omega \text{ and all }n. \end{equation*}

Let $v^{n}(t,x_{1},y)=v(t+t_{n},x_{1}+x_{1,n},y;\,v_{0})$ . Then $v^{n}$ satisfies

(3.4) \begin{equation} \begin{cases} \partial _{t}v^{n}=\Delta v^{n}+c(t+t_{n})\partial _{1}v^{n}+f(t+t_{n},x_{1}+x_{1,n},y,v^{n}), \quad t\gt 0, (x_{1},y)\in \Omega ,\\ \partial _{\nu } v^{n}(t,x_{1},y)=0, \quad t\in \mathbb{R},(x_{1},y)\in \partial \Omega . \end{cases} \end{equation}

Then parabolic estimates and the almost periodicity of $c(t)$ and $f(t,x,v)$ imply that (up to subsequence) there are $v^{*}$ , $c^{*}$ and $f^{*}$ such that

\begin{align*} \lim _{n\rightarrow \infty }v^{n}(t,x_{1},y)=&v^{*}(t,x_{1},y)\quad \text{locally uniformly in }t\in \mathbb{R},(x_{1},y)\in \Omega ,\\ \lim _{n\rightarrow \infty }f(t+t_{n},x_{1}+x_{1,n},y,v^{n})=&f^{*}(t,x_{1},y,v^{*})\quad \text{locally uniformly in }t\in \mathbb{R},(x_{1},y)\in \Omega \end{align*}

and

\begin{align*} \lim _{n\rightarrow \infty }c(t+t_{n})=&c^{*}(t)\quad \text{uniformly in }t\in \mathbb{R}, \end{align*}

where $v^{*}(t,x_{1},y)$ is a nonnegative bounded solution of

(3.5) \begin{equation} \begin{cases} \partial _{t}v^{*}=\Delta v^{*}+c(t)\partial _{1}v^{*}+f(t,x_{1},y,v^{*}),\quad t\in \mathbb{R},(x_{1},y)\in \Omega ,\\ \partial _{\nu } v^{*}=0, \quad t\in \mathbb{R},(x_{1},y)\in \partial \Omega \end{cases} \end{equation}

and

\begin{equation*} v^{*}(0,0,y)=v(t_{n},x_{1,n},y;\,v_{0})\geq \epsilon _{0}. \end{equation*}

Note that $f(t,x,u)\leq f_{u}(t,x,0)u=g(t,x,0)u$ and $\lim _{x_{1}\rightarrow \infty }\sup _{(t,y)\in \mathbb{R}\times \omega }g(t,x_{1},y,0)\lt 0$ . Choose $\alpha \gt 0$ such that

\begin{equation*} \lim _{x_{1}\rightarrow \infty }\sup _{(t,y)\in \mathbb{R}\times \omega }g(t,x_{1},y,0)\lt -\alpha . \end{equation*}

Recall that $S=\max \{M_{0},\|v_{0}\|_{L^{\infty }(\Omega )}\}$ . For any fixed $t_{0}\in \mathbb{R}$ , $w(t,x)=e^{-\alpha (t-t_{0})}S$ is a solution of

(3.6) \begin{equation} \begin{cases} \partial _{t}w= \Delta w+c(t)\partial _{1}w-\alpha w,\quad t\in \mathbb{R}, (x_{1},y)\in \Omega ,\\ \partial _{\nu } w=0, \quad t\in \mathbb{R}, (x_{1},y)\in \partial \Omega . \end{cases} \end{equation}

We also have that $v^{*}(t,x_{1},y)$ is a subsolution of (3.6). The comparison principle implies that

\begin{equation*} v^{*}(t,x_{1},y)\leq e^{-\alpha (t-t_{0})}S\quad \text{for any }t\gt t_{0}, (x_{1},y)\in \Omega , \end{equation*}

particularly, $v^{*}(0,x_{1},y)\leq e^{\alpha t_{0}S}$ for any $(x_{1},y)\in \Omega$ and $t_{0}\lt 0$ . Choose $t_{0}\ll -1$ such that $e^{\alpha t_{0}}S\leq \epsilon _{0}$ , then $v^{*}(0,x_{1},y)\lt \epsilon _{0}$ for $(x_{1},y)\in \Omega$ , which is a contradiction. Therefore, for any $\epsilon \gt 0$ , there exist constants $T_{\epsilon }\gt 0$ and $L(\epsilon )\gt 0$ such that

(3.7) \begin{equation} v(t,x_{1},y;\,v_{0})\lt \epsilon \quad \text{for $t\gt T(\epsilon )$ and $|x|\gt L_{\epsilon }$} \end{equation}

and (3.3) hold true.

Given $v_{0}\in X^{+}$ , $\epsilon \gt 0$ , let

\begin{equation*} v^{\epsilon }(t,x_{1},y)=v(t,x_{1},y;\,v_{0})-\epsilon . \end{equation*}

Then, $v^{\epsilon }(t,x_{1},y)$ satisfies

(3.8) \begin{equation} \begin{cases} \partial _{t}v^{\epsilon }= \Delta v^{\epsilon }+c(t)\partial _{1}v^{\epsilon }+f(t,x,v^{\epsilon }+\epsilon ),\quad t\in \mathbb{R},x\in \Omega ,\\[3pt] \partial _{\nu }v^{\epsilon }=0,\quad t\in \mathbb{R},x\in \partial \Omega . \end{cases} \end{equation}

By the assumption on $f$ , we have $f(t,x,v^{\epsilon }+\epsilon )\leq g(t,x,0)(v^{\epsilon }+\epsilon )$ . Then $v^{\epsilon }(t,x_{1},y)$ satisfies

(3.9) \begin{equation} \begin{cases} \partial _{t}v^{\epsilon }\leq \Delta v^{\epsilon }+c(t)\partial _{1}v^{\epsilon }+g(t,x,0)(v^{\epsilon }+\epsilon ),\quad t\in \mathbb{R},x\in \Omega ,\\[3pt] \partial _{\nu }v^{\epsilon }=0,\quad t\in \mathbb{R},x\in \partial \Omega . \end{cases} \end{equation}

Since $\lambda _{\infty }\lt 0$ , there exists $L\gt 0$ such that $\lambda _{L}\lt 0$ . Let $\eta \,:\,\mathbb{R}\rightarrow [0,1]$ be a smooth function with $\eta (x_{1})=1$ for $|x_{1}|\leq \frac {L}{2}$ and $\eta (x_{1})=0$ for $|x_{1}|\geq \frac {3L}{4}$ . Define

\begin{equation*} v^{\epsilon }_{0}(x_{1},y)=\eta (x_{1})\Big(v_{0}(x_{1},y)-\min _{[{-}L,L]\times \omega }v_{0}(x_{1},y)\Big),\quad (x_{1},y)\in [{-}L,L]\times \omega . \end{equation*}

Clearly, $v^{\epsilon }_{0}(x_{1},y)\in X^{+}$ . Let $v(t,x_{1},y;\,v^{\epsilon }_{0})$ be the unique solution of the following problem

\begin{equation*} \begin{cases} \partial _{t}v= \Delta v+c(t)\partial _{1}v+g(t,x,0)(v+\epsilon ),\quad t\gt 0, x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }v=0,\quad t\gt 0, x\in ({-}L,L)\times \partial \omega ,\\ v(t,-L,y)=v(t,L,y)=0,\quad t\gt 0, y\in \omega \end{cases} \end{equation*}

with initial value $v(0,x_{1},y;\,v^{\epsilon }_{0})=v^{\epsilon }_{0}(x_{1},y)$ , $(x_{1},y)\in [{-}L,L]\times \omega$ . Let $U_{L}(t,c)$ be the solution operator of

\begin{equation*} \begin{cases} \partial _{t}w= \Delta w+c(t)\partial _{1}w+f_{u}(t,x,0)w,\quad t\gt 0, x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }w=0,\quad t\gt 0, x\in ({-}L,L)\times \partial \omega ,\\ w(t,-L,y)=w(t,L,y)=0\quad t\gt 0, y\in \omega . \end{cases} \end{equation*}

Then by the variation of constants formula, we have

(3.10) \begin{equation} v(t,\cdot ;\,v^{\epsilon }_{0})=U_{L}(t,c)v^{\epsilon }_{0}+\epsilon \int ^{t}_{0}U_{L}(t-s,c\cdot s)g(s,x,0)ds. \end{equation}

Since $\lambda _{L}\lt 0$ , by Definition 2.1, there exists $M\gt 0$ such that

\begin{equation*} \epsilon \int ^{t}_{0}U_{L}(t-s,c\cdot s)g(s,x,0)ds\lt \epsilon M \end{equation*}

for $t\geq 0$ . Together with (3.10), we have

(3.11) \begin{equation} v(t,\cdot ;\,v^{\epsilon }_{0})\leq U_{L}(t,c)v^{\epsilon }_{0}+\epsilon M\quad \text{in }({-}L,L)\times \omega ,t\geq 0. \end{equation}

Note that

\begin{equation*} v^{\epsilon }(t,\pm L,y)=v(t,\pm L,y)-\epsilon \lt 0\quad \text{for all }t\gt 0,y\in \omega \end{equation*}

and

\begin{equation*} v^{\epsilon }(0,x_{1},y)=v_{0}(x_{1},y)-\epsilon \leq v^{\epsilon }_{0}(x_{1},y)\quad \text{for }x_{1}\in ({-}L,L), y\in \omega . \end{equation*}

Then, by (3.9) and the comparison principle, we obtain that

\begin{equation*} v^{\epsilon }(t,x_{1},y)\leq v(t,x_{1},y;\,v^{\epsilon }_{0})\quad \text{for }t\gt 0,x_{1}\in ({-}L,L),y\in \omega . \end{equation*}

By (3.11),

\begin{equation*} v^{\epsilon }(t,x_{1},y)\leq U_{L}(t,c)v^{\epsilon }_{0}+\epsilon M\quad \text{for }t\gt 0,x_{1}\in ({-}L,L),y\in \omega . \end{equation*}

Due to $\lambda _{L}\lt 0$ , Definition 2.1 ensures that there exists $T_{\epsilon }\gt 0$ such that

\begin{equation*} U_{L}(t,c)v^{\epsilon }_{0}\leq \varepsilon \quad \text{for all }t\geq T_{\epsilon }. \end{equation*}

Hence,

(3.12) \begin{equation} v^{\epsilon }(t,x_{1},y)\leq (1+M)\epsilon \end{equation}

for all $t\geq T_{\epsilon }$ , $x_{1}\in ({-}L,L)$ and $y\in \omega$ . By (3.9), choose large $T\gt 0$ and $L\gt 0$ , $v(t,x_{1},y;\,v_{0})\lt \epsilon$ for $t\geq T$ , $|x_{1}|\gt \frac {L}{2}$ and $y\in \omega$ . This, together with (3.12), implies that

\begin{equation*} v(t,x_{1},y;\,v_{0})\lt (2+M)\epsilon \quad \text{for all }t\gt \max \{T_{\epsilon },T\}, (x_{1},y)\in \Omega . \end{equation*}

By the arbitrariness of $\epsilon$ , we obtain $\lim _{t\rightarrow \infty }v(t,x_{1},y;\,v_{0})=0$ uniformly for $(x_{1},y)\in \Omega$ . This completes the proof.

Consider the following mixed Dirichlet–Neumann boundary value problem

(3.13) \begin{equation} \begin{cases} \partial _{t}w= \Delta w+c(t)\partial _{1}w+f(t,x,w),\quad t\gt 0, x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }w=0,\quad t\gt 0, x\in ({-}L,L)\times \partial \omega ,\\ w(t,-L,y)=w(t,L,y)=0,\quad t\gt 0, y\in \omega . \end{cases} \end{equation}

For any $w_{0}\in X^{+}_{L}$ , we denote by $w(t,x_{1},y;\,w_{0})$ the unique solution of (3.13) with $w(0,x_{1},y;\,w_{0})=w_{0}$ . Then we have the following proposition on the dynamics of (3.13).

Proposition 3.1. Assume that (H1)-(H4) hold true and $\lambda _{L}\gt 0$ . Then (3.13) admits a unique positive almost periodic solution $w^{*}(t,x)$ and for any $w_{0}\in X^{+}_{L}\setminus \{0\}$ , there holds

(3.14) \begin{equation} \lim _{t\rightarrow \infty }\|w(t,x_{1},y;\,v_{0})-w^{*}(t,x)\|_{X_L}=0. \end{equation}

Proof. It can be proved by properly modifying the arguments in [Reference Zhao32, Theorem 3.1]. For completeness, we provide the proof in the following.

Let $\mathcal{H}(c,f)$ be the closure of $\{(c\cdot s,f\cdot s)\,:\, s\in \mathbb{R}\}$ with the compact open topology. For any $(\widetilde {c},\widetilde {f})\in \mathcal{H}(c,f)$ , assumptions (H1)-(H4) imply that $w=M$ , $M\geq M_{0}$ , is an supersolution of (3.13). Hence, by the comparison principle and a priori estimates for parabolic equations, each solution $w(t,x_{1},y;\,w_{0},\widetilde {c},\widetilde {f})$ of (3.13) exists globally on $[0,\infty )$ , and for any $t\gt 0$ , the set $\{w(t,x_{1},y;\,w_{0},\widetilde {c},\widetilde {f})\,:\,t\gt 0\}$ is precompact in $X^{+}_{L}$ . Define the skew-product semiflow $\Pi _{t}\,:\,X^{+}_{L}\times \mathcal{H}(c,f)\rightarrow \Pi _{t}\,:\,X^{+}_{L}\times \mathcal{H}(c,f)$ by

\begin{equation*} \Pi _{t}\big(w_{0},\widetilde {c},\widetilde {f}\big)=(w(t,x_{1},y;\,w_{0},\widetilde {c},\widetilde {f}),\widetilde {c}_{t},\widetilde {f}_{t}). \end{equation*}

Then, the omega limit set $\omega (w_{0},\widetilde {c},\widetilde {f})$ of the forward orbit $\gamma ^{+}(w_{0},\widetilde {c},\widetilde {f})\,:\!=\,\{\Pi _{t}(w_{0},\widetilde {c},\widetilde {f})\,:\,t\geq 0\}$ is well defined, compact and invariant under $\Pi _{t}, t\geq 0$ , for each $(w_{0},\widetilde {c},\widetilde {f})\in X^{+}_{L}\times \mathcal{H}(c,f)$ .

We first show that there exists a $\delta \gt 0$ such that

\begin{equation*} \limsup _{t\rightarrow \infty }\|w(t,x_{1},y;\,w_{0},\widetilde {c},\widetilde {f})\|_{X_L}\geq \delta , \quad \forall \big(w_{0},\widetilde {c},\widetilde {f}\big)\in X^{+}_{L}\times \mathcal{H}(c,f). \end{equation*}

We set $\lambda _{L}$ of (3.1) as $\lambda _{L}(g)$ . Since $\lambda _{L}(g)\gt 0$ , then we can choose a sufficient small $\varepsilon _{0}\gt 0$ such that

\begin{equation*} \lambda _{L}(f_{u}-\varepsilon _{0})\gt 0. \end{equation*}

Since $f$ is uniformly almost periodic in $t$ and $\mathcal{H}(f)$ is compact, there exists $\delta _{0}\gt 0$ such that

\begin{equation*} |\widetilde {f}(t,x_{1},y,u)-\widetilde {f}_{u}(t,x_{1},y,0)u|\lt \varepsilon _{0}, \quad (x_{1},y)\in \Omega ,\, t\in \mathbb{R},u\in (0,\delta _{0}], \widetilde {f}\in \mathcal{H}(f). \end{equation*}

Suppose on the contrary that there is $(w_{0},\widetilde {c},\widetilde {f})\in X^{+}_{L}\times \mathcal{H}(c,f)$ , such that

\begin{equation*} \limsup _{t\rightarrow \infty }\|w(t,x_{1},y;\,w_{0},\widetilde {c},\widetilde {f}\|_{X_L}\lt \delta . \end{equation*}

Then, there exists $t_{0}\gt 0$ such that

\begin{equation*} \|w(t,x_{1},y;\,w_{0},\widetilde {c},\widetilde {f})\|_{X_L}\lt \delta ,\quad \forall t\geq t_{0}, (x_{1},y)\in \Omega . \end{equation*}

Since $w(t_{0},x_{1},y;\,w_{0},\widetilde {c},\widetilde {f})\gt 0$ , then

\begin{equation*} \|w\big(t,x_{1},y;\,w_{*},\widetilde {c}_{t_{0}},\widetilde {f}_{t_{0}}\big)\|_{X_L}\lt \delta ,\quad \forall t\geq 0, (x_{1},y)\in \Omega , \end{equation*}

where $w_{*}=w(t_{0},x_{1},y;\,w_{0},\widetilde {c},\widetilde {f})$ , $\widetilde {c}_{t_{0}}=c(t+t_{0})$ and $\widetilde {f}_{t_{0}}=f(t+t_{0},x,w)$ . Then $w\big(t,x_{1},y;\,w_{*},\widetilde {c}_{t_{0}},\widetilde {f}_{t_{0}}\big)$ satisfies the following differential inequality

\begin{equation*} \begin{cases} \partial _{t}w\geq \Delta w+\widetilde {c}(t)\partial _{1}w+(f_{u}(t,x_{1},y,0)-\varepsilon _{0})w,\quad t\gt 0, x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }w=0,\quad t\gt 0, x\in ({-}L,L)\times \partial \omega ,\\ w(t,-L,y)=w(t,L,y)=0,\quad t\gt 0,y\in \omega . \end{cases} \end{equation*}

Similar to (2.2), $\lambda _{L}(f_{u}-\varepsilon _{0})=\lim _{t\rightarrow \infty }\frac {1}{t}\int ^{t}_{0}k_{L}(\sigma _{\tau }f_{u})d\tau$ and $e^{\int ^{t}_{0}k_{L}(\sigma _{\tau }f_{u})d\tau }\phi _{L}(\sigma _{t}f_{u})$ is a solution of

\begin{equation*} \begin{cases} \partial _{t}w= \Delta w+\widetilde {c}(t)\partial _{1}w+(f_{u}(t,x_{1},y,0)-\varepsilon _{0})w,\quad t\gt 0, x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }w=0,\quad t\gt 0, x\in ({-}L,L)\times \partial \omega ,\\ w(t,-L,y)=w(t,L,y)=0,\quad t\gt 0,y\in \omega . \end{cases} \end{equation*}

Choose a sufficiently small $\varepsilon \gt 0$ such that $w_{*}\geq \varepsilon \phi _{L}$ . By the standard comparison theorem, we have

\begin{equation*} w\big(t,x_{1},y;\,w_{*},\widetilde {c}_{t_{0}},\widetilde {f}_{t_{0}}\big)\geq \varepsilon e^{\int ^{t}_{0}k_{L}(\sigma _{\tau }f_{u})d\tau }\phi _{L}(\sigma _{t}f_{u}),\quad t\geq 0, (x_{1},y)\in \Omega . \end{equation*}

Letting $t\rightarrow \infty$ , we have

\begin{equation*} \lim _{t\rightarrow \infty }w\big(t,x_{1},y;\,w_{*},\widetilde {c}_{t_{0}},\widetilde {f}_{t_{0}}\big)=\infty ,\quad \forall (x_{1},y)\in \Omega , \end{equation*}

which is a contradiction.

Following from the invariance of $\omega (w_{0},\widetilde {c},\widetilde {f})$ and $\Pi _{t}((X^{+}_{L}\setminus \{0\})\times \mathcal{H}(c,f))\subset int{X^{+}_{L}\times \mathcal{H}(c,f)}$ , $\forall t\gt 0$ , we have

(3.15) \begin{equation} \omega \big(w_{0},\widetilde {c},\widetilde {f}\big)\subset int{X^{+}_{L}\times \mathcal{H}(c,f)},\quad \forall \big(w_{0},\widetilde {c},\widetilde {f}\big)\in (X^{+}_{L}\setminus \{0\})\times \mathcal{H}(c,f). \end{equation}

For each $(\widetilde {c},\widetilde {f},t)\in \mathcal{H}(c,f)\times (0,\infty )$ , for any $w^{\prime }_{0}(\cdot ),\, w^{\prime \prime }_{0}(\cdot )\in X^{+}_{L}$ , when $w^{\prime }_{0}(\cdot )\gt w^{\prime \prime }_{0}(\cdot )$ , by comparison principal, we have

\begin{equation*} w\big(t,\cdot ;\,w^{\prime }_{0},\widetilde {c},\widetilde {f}\big)\gt w\big(t,\cdot ;\,w^{\prime \prime }_{0},\widetilde {c},\widetilde {f}\big) \quad \text{for all }t\gt 0. \end{equation*}

Then, $w(t,\cdot ;\,\cdot ,\widetilde {c},\widetilde {f})$ is strongly monotone on $X^{+}_{L}$ for each $(\widetilde {c},\widetilde {f},t)\in \mathcal{H}(c,f)\times (0,\infty )$ . Moreover, by assumptions (H1)–(H4), $w(t,\cdot ;\,\cdot ,\widetilde {c},\widetilde {f})$ is also subhomongenous on $X^{+}_{L}$ for each $(\widetilde {c},\widetilde {f},t)\in \mathcal{H}(c,f)\times (0,\infty )$ . Let $w^{\prime }_{0}\in X^{+}_{L}\setminus \{0\}$ be fixed and $K_{0}=\omega (w^{\prime }_{0},\widetilde {c},\widetilde {f})$ . By [Reference Zhao32, Theorem 2.1] and (3.15), for every $w_{0}\in X^{+}_{L}\setminus \{0\}$ ,

\begin{equation*} \lim _{t\rightarrow \infty }\|w\big(t,\cdot ;\,w_{0},\widetilde {c},\widetilde {f}\big)-w\big(t,\cdot ;\,w^{*}_{0},\widetilde {c},\widetilde {f}\big)\|_{X_L}=0, \end{equation*}

where $(w^{*}_{0},\widetilde {c},\widetilde {f})\in K_{0}$ . Therefore, $w(t,\cdot ;\,w^{*}_{0},\widetilde {c},\widetilde {f})$ is a unique positive almost periodic solution of (3.13). This completes the proof.

Theorem 3.2. Assume that (H1)-(H4) hold true. If $\lambda _{\infty }\gt 0$ , then for any $L\gt 0$ and $v_{0}\in X^{+}\setminus \{0\}$ ,

\begin{equation*} \liminf _{t\rightarrow \infty }\inf _{x_{1}\in [{-}L,L],y\in \omega }v(t,x_{1},y;\,v_{0})\gt 0. \end{equation*}

Proof. By the definition of $\lambda _{\infty }$ , due to $\lambda _{\infty }\gt 0$ , there is $L^{*}\gt 0$ such that $\lambda _{L}\gt 0$ for any $L\gt L^{*}$ . Then, by Proposition 3.1, there is a unique positive almost periodic solution $w^{*}(t,x)$ of (3.13). Note that any nonnegative solution of (1.2) is a supersolution of (3.13). Then,

\begin{equation*} v(t,x_{1},y;\,v_{0})\geq w(t,x_{1},y;\,v_{0})\quad \text{in }({-}L,L)\times \omega . \end{equation*}

Then by (3.14), we have

\begin{equation*} \liminf _{t\rightarrow \infty }\inf _{x_{1}\in [{-}L,L],y\in \omega }v(t,x_{1},y;\,v_{0})\gt 0. \end{equation*}

This completes the proof.

4. Forced wave solutions

In this section, we study the existence, uniqueness, stability, and exponential decay of forced wave solutions of (1.1). By (1.5), in the following, we need to prove that there is an entire solution $V(t,x_{1},y)$ of (1.2), which is bounded, positive and almost periodic in $t$ for any $(x_{1},y)\in \Omega =\mathbb{R}\times \omega$ .

Lemma 4.1. Assume that (H1)-(H4) holds true. When $\lambda _{\infty }\gt 0$ , equation (1.2), that is,

(4.1) \begin{equation} \begin{cases} \partial _{t}v=\Delta v+c(t)\partial _{1}v+f(t,x_{1},y,v),\quad (x_{1},y)\in \mathbb{R}\times \Omega ,\\ \partial _{\nu }v=0\quad \text{on } \partial \Omega , \end{cases} \end{equation}

admits a unique bounded positive solution $V(t,x_{1},y)$ with

(4.2) \begin{equation} \lim _{|x_{1}|\rightarrow \infty }\sup _{t\in \mathbb{R},y\in \omega }V(t,x_{1},y)=0. \end{equation}

Proof. Let $M_{0}$ be given in (H3). Then $\overline {v}(t,x)=M_{0}$ is a supersolution of (4.1). Let $v(t,x_{1},y;\,\overline {v},c,f)$ be a solution of (1.2) with the initial condition $v(0,x_{1},y;\,\overline {v},c,f)=\overline {v}$ . By comparison principle, $v(t,x_{1},y;\,\overline {v},c,f)\leq \overline {v}(t,x)$ for $x\in \Omega$ and $t\gt 0$ . Since $c$ and $f$ are almost periodic function, there exists $t_{n}\rightarrow \infty$ such that $c\cdot t_{n}\rightarrow c$ and $f\cdot t_{n}\rightarrow f$ uniformly as $n\rightarrow \infty$ . By a priori estimates for parabolic equations, there exists a function $V(t,x)$ such that $v(t+t_{n},x_{1},y;\,\overline {v},c,f)$ converges to $V(t,x_{1},y)$ locally uniformly in $(t,x_{1},y)\in \mathbb{R}\times \Omega$ as $n\rightarrow \infty$ . Then, $V(t,x_{1},y)$ is a bounded entire solution satisfying (4.1) for $t\in \mathbb{R}$ and $(x_{1},y)\in \Omega$ . By Theorem 3.2, we have $\inf _{\mathbb{R}\times [{-}L,L]\omega }V(t,x_{1},y)\gt 0$ for all $L\gt 0$ .

Following from the arguments for (3.3), we also have $\lim _{|x_{1}|\rightarrow \infty }\sup _{t\in \mathbb{R},y\in \omega }V(t,x_{1},y)=0$ , that is, (4.2) holds true. In the following, we prove the uniqueness of $V(t,x_{1},y)$ . Suppose that there are two bounded positive solutions $V(t,x_{1},y)$ and $V^{\prime }(t,x_{1},y)$ of (4.1). We first show that $V(t,x_{1},y)\leq V^{\prime }(t,x_{1},y)$ . For any $\epsilon \gt 0$ , define

\begin{equation*} K_{\epsilon }\,:\!=\,\{k\gt 0\,:\,kV^{\prime }\geq V-\epsilon \quad \text{in }\mathbb{R}\times \overline {\Omega }\}. \end{equation*}

By (4.2), there exists $R(\epsilon )\gt 0$ such that

\begin{equation*} V(t,x_{1},y)-\epsilon \lt 0, \quad \forall \, |x_{1}|\gt R(\epsilon ),y\in \omega ,t\in \mathbb{R}. \end{equation*}

Together with $V^{\prime }\gt 0$ in $\mathbb{R}\times \overline {\Omega }$ , we find that the set $K_{\epsilon }$ is nonempty. Set $k(\epsilon )\,:\!=\,\inf \{k\,:\,k\in K_{\epsilon }\}$ . Then, $k\,:\,\mathbb{R}^{+}\rightarrow \mathbb{R}$ is a nonincreasing function and thus $\lim _{\epsilon \rightarrow 0^{+}}k(\epsilon )$ exists. Set $k^{*}=\lim _{\epsilon \rightarrow 0^{+}}k(\epsilon )$ . Assume that

(4.3) \begin{equation} k^{*}\gt 1. \end{equation}

For any $0\lt \epsilon \lt \sup _{\mathbb{R}\times \Omega }V$ small enough, we have $k(\epsilon )\gt 0$ ,

\begin{equation*} k(\epsilon )V^{\prime }-V+\epsilon \geq 0\quad \text{in }\mathbb{R}\times \overline {\Omega } \end{equation*}

and there exists a sequence $\{t^{\epsilon }_{n}\}\subset \mathbb{R}$ such that

\begin{equation*} \lim _{n\rightarrow \infty }\inf _{(x_{1},y)\in \mathbb{R}\times \omega }[k_{\epsilon }V^{\prime }(t^{\epsilon }_{n},x_{1},y)-V(t^{\epsilon }_{n},x_{1},y)+\epsilon ]=0. \end{equation*}

Without loss of generality, we assume that there are $V^{\prime }_{\epsilon }(t,x_{1},y)$ , $V_{\epsilon }(t,x_{1},y)$ and $(c^{\epsilon },f^{\epsilon })\in \mathcal{H}(c,f)$ such that

\begin{equation*} V^{\prime }_{\epsilon }(t,x_{1},y)=\lim _{n\rightarrow \infty }V^{\prime }\big(t+t^{\epsilon }_{n},x_{1},y\big), V_{\epsilon }(t,x_{1},y)=\lim _{n\rightarrow \infty }V\big(t+t^{\epsilon }_{n},x_{1},y\big) \end{equation*}

and

\begin{equation*} f^{\epsilon }(t,x,u)=\lim _{n\rightarrow \infty }f(t+t^{\epsilon }_{n},x_{1},y,u) \end{equation*}

locally uniformly in $(t,x_{1},y)\in \mathbb{R}\times \mathbb{R}\times \omega$ , $u\gt 0$ and

\begin{equation*} c^{\epsilon }(t)=\lim _{n\rightarrow \infty }c(t+t^{\epsilon }_{n})\quad \text{uniformly in }t\in \mathbb{R}. \end{equation*}

Then, $V_{\epsilon }$ and $V^{\prime }_{\epsilon }$ are bounded positive solution of (1.2) with $c$ and $f$ replaced by $c^{\epsilon }$ and $f^{\epsilon }$ , respectively. Moreover, there hold $k_{\epsilon }V^{\prime }_{\epsilon }\geq V_{\epsilon }-\epsilon$ and

\begin{equation*} \inf _{(x_{1},y)\in \mathbb{R}\times \omega }[k_{\epsilon }V^{\prime }_{\epsilon }(0,x)-V(0,x)+\epsilon ]=0. \end{equation*}

By (4.2) again, there is $(x^{\epsilon }_{1},y^{\epsilon })\in \mathbb{R}\times \omega$ such that

\begin{equation*} k_{\epsilon }V^{\prime }_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)-V\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)+\epsilon =0. \end{equation*}

Then, the function $t\rightarrow k_{\epsilon }V^{\prime }_{\epsilon }(t,x^{\epsilon }_{1},y^{\epsilon })-V(t,x^{\epsilon }_{1},y^{\epsilon })+\epsilon$ attains its minimum value at $0$ and $k_{\epsilon }V^{\prime }_{\epsilon }(0,x_{1},y)-V(0,x_{1},y)+\epsilon$ attains its minimum value at $(x^{\epsilon }_{1},y^{\epsilon })$ .

Then, at point $\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)$ , by (H1)-(H4), we have

\begin{align*} 0 & = k_{\epsilon }\frac {\partial V^{\prime }_{\epsilon }}{\partial t}\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)-\frac {\partial V_{\epsilon }}{\partial t}\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)\\ &=\left[k_{\epsilon }\Delta V^{\prime }_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)+c^{\epsilon }(0)\partial _{1}\left(k_{\epsilon }V^{\prime }_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)\right)+f^{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon }V^{\prime }_{\epsilon }\right)\right]\\ & \quad -\left[\Delta V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)+c^{\epsilon }(0)\partial _{1}V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)+f^{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon },V_{\epsilon }\right)\right]\\ &=\left[k_{\epsilon }\Delta V^{\prime }_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)-\Delta V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)\right]+c^{\epsilon }(0)\left[\partial _{1}\left(k_{\epsilon }V^{\prime }_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)\right)-\partial _{1}V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)\right]\\ &\quad +f^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon }V^{\prime }_{\epsilon })-f^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },V_{\epsilon })\\ &\geq f^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon }V^{\prime }_{\epsilon })-f^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },V_{\epsilon })\\ & \geq \left[k_{\epsilon } V^{\prime }_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)-V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)\right]\left[g^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon } V^{\prime }_{\epsilon })+V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)g^{\epsilon }_{u}\left(0,x^{\epsilon }_{1},y^{\epsilon },\eta _{\epsilon }\right)\right], \end{align*}

where $\eta _{\epsilon }$ is between $k_{\epsilon } V^{\prime }_{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon })$ and $V_{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon })$ . Since $k_{\epsilon } V^{\prime }_{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon })-V_{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon })\lt 0$ , we obtain that

\begin{equation*} g^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon } V^{\prime }_{\epsilon })+V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)g^{\epsilon }_{u}(0,x^{\epsilon }_{1},y^{\epsilon },\eta _{\epsilon })\geq 0. \end{equation*}

From (H2), $g^{\epsilon }_{u}\leq 0$ . Then

\begin{equation*} 0\leq g^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon } V^{\prime }_{\epsilon })+V_{\epsilon }\left(0,x^{\epsilon }_{1},y^{\epsilon }\right)g^{\epsilon }_{u}(0,x^{\epsilon }_{1},y^{\epsilon },\eta _{\epsilon })\leq g^{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon },k_{\epsilon } V^{\prime }_{\epsilon })\leq 0. \end{equation*}

By (H4), $\{x^{\epsilon }_{1}\}$ must be bounded. From $k_{\epsilon }V^{\prime }_{\epsilon }(0,x^{\epsilon }_{1},y^{\epsilon })-V(0,x^{\epsilon }_{1},y^{\epsilon })+\epsilon =0$ , we get that $\{k_{\epsilon }\}$ is bounded and then $k^{*}\in [1,\infty )$ . Choose a sequence $\{\epsilon _{n}\}$ in $\mathbb{R}^{+}$ such that

\begin{equation*} \lim _{n\rightarrow \infty }\epsilon _{n}=0,\quad \xi \,:\!=\,\lim _{n\rightarrow \infty }x^{\epsilon _{n}}_{1}\in \mathbb{R},\quad \eta \,:\!=\,\lim _{n\rightarrow \infty }y^{\epsilon _{n}}\in \overline {\omega }, \end{equation*}

and

\begin{equation*} V^{\prime *}(t,x_{1},y)=\lim _{n\rightarrow \infty }V^{\prime }_{\epsilon _{n}}(t,x_{1},y),\quad V^{*}(t,x_{1},y)=\lim _{n\rightarrow \infty }V_{\epsilon _{n}}(t,x_{1},y) \end{equation*}

locally uniformly in $(t,x)\in \mathbb{R}\times \Omega$ ,

\begin{equation*} c^{*}(t)=\lim _{n\rightarrow \infty }c^{\epsilon _{n}}(t)\quad \text{uniformly in }t\in \mathbb{R}, \end{equation*}

and

\begin{equation*} f^{*}(t,x_{1},y,u)=\lim _{n\rightarrow \infty }f^{\epsilon _{n}}(t,x,u)\quad \text{uniformly in }t\in \mathbb{R}, x\in \Omega , u\gt 0. \end{equation*}

Then $V^{*}$ and $V^{\prime *}$ are bounded positive entire solutions of (4.1) with $c$ and $f$ are replaced by $c^{*}$ and $f^{*}$ . Moreover, we have $k^{*}V^{\prime *}\geq V^{*}$ and $k^{*}V^{\prime *}(0,\xi ,\eta )-V^{*}(0,\xi ,\eta )=0$ . Set $W\,:\!=\,k^{*}V^{\prime *}-V^{*}$ satisfies $W(0,\xi ,\eta )=0$ . Then,

\begin{align*} W_{t}=&\Delta W+c^{*}(t)\partial _{1}W+k^{*}V^{\prime *}g(t,x,V^{\prime *})-V^{*}g(t,x,V^{*})\\ \geq &\Delta W+c^{*}(t)\partial _{1}W+[g(t,x,k^{*}V^{\prime *})+V^{*}g_{u}(t,x,\eta )]W,\quad \forall t\in \mathbb{R}, x\in \Omega \end{align*}

and

\begin{equation*} \partial _{\nu }W=0,\quad t\in \mathbb{R}, x\in \partial \Omega . \end{equation*}

Since $W$ is nonnegative in $\mathbb{R}\times \Omega$ , vanishes at $(\xi ,\eta )$ , the strong maximum principle and the Hopf lemma yield $W=0$ . Then

\begin{equation*} g(t,x,k^{*}V^{\prime *})=g(t,x,V^{\prime *})=g(t,x,V^{*}), \end{equation*}

which implies that $k^{*}=1$ and then $V(t,x_{1},y)\leq V^{\prime }(t,x_{1},y)$ . Similarly, we can also prove $V(t,x_{1},y)\geq V^{\prime }(t,x_{1},y)$ . Therefore, $V(t,x_{1},y)= V^{\prime }(t,x_{1},y)$ and $V(t,x_{1},y)$ is a unique bounded positive solution of (4.1). This completes the proof.

Lemma 4.2. A function $f(t,x)$ is almost periodic in $t$ uniformly with respect with respect to $x\in E\subset \mathbb{R}^{K}$ if and only if it is uniformly continuous on $\mathbb{R}\times E$ and for every pair of sequences $\{s_{n}\}^{\infty }_{n=1}$ , $\{r_{m}\}^{\infty }_{m=1}$ , there are subsequences $\{s^{\prime }_{n}\}^{\infty }_{n=1}\subset \{s_{n}\}^{\infty }_{n=1}$ , $\{r^{\prime }_{n}\}^{\infty }_{n=1}\subset \{r_{n}\}^{\infty }_{n=1}$ such that for each $(t,x)\in \mathbb{R}\times \mathbb{R}^{K}$ ,

\begin{equation*} \lim _{m\rightarrow \infty }\lim _{n\rightarrow \infty }f(t+s^{\prime }_{n}+r^{\prime }_{m},x) =\lim _{n\rightarrow \infty }f(t+s^{\prime }_{n}+r^{\prime }_{n},x). \end{equation*}

Proof. See [Reference Fink10, Theorems 1.17 and 2.10].

Theorem 4.1. Assume that (H1)–(H4) hold true. If $\lambda _{\infty }\gt 0$ , $V(t,x_{1},y)$ is a bounded, positive, unique and almost periodic entire solution of (4.1). For any $v_{0}\in X^{+}\setminus \{0\}$ , there holds

(4.4) \begin{equation} \lim _{t\rightarrow \infty }\|v(t,x_{1},y;\,v_{0})-V(t,x_{1},y)\|_{\infty }=0. \end{equation}

Proof. From Lemma 4.1, we need to show that $V(t,x_{1},y)$ is almost periodic in $t$ for $(x_{1},y)$ in bounded sets. We write $V(t,x_{1},y;\,c,f)$ for $V(t,x_{1},y)$ to indicate the dependence on $c$ and $f$ . The Schauder estimates ensure that $V(t,x_{1},y;\,c,f)$ is uniformly continuous in $(t,x_{1},y)\in \mathbb{R}\times \Omega$ . It then suffices to show that for each $x$ in bounded sets, $V(t,x_{1},y;\,c,f)$ is almost periodic in $t$ . To this end, let $\{\alpha _{n}\}$ and $\{\beta _{n}\}$ be any two sequence of $\mathbb{R}$ . Without loss of generality, we may assume that

\begin{equation*} c^{\prime }=\lim _{m\rightarrow \infty }c(t+\beta _{m}),\quad c^{\prime \prime }=\lim _{n\rightarrow \infty }c(t+\alpha _{n}+\beta _{n}), \end{equation*}
\begin{equation*} f^{\prime }(t,x,u)=\lim _{m\rightarrow \infty }f(t+\beta _{m},x,u),\quad f^{\prime \prime }(t,x,u)=\lim _{n\rightarrow \infty }f(t+\alpha _{n}+\beta _{n},x,u) \end{equation*}

locally uniformly in $(t,x,u)\in \mathbb{R}\times \Omega \times \mathbb{R}$ and

\begin{equation*} V^{\prime }(x)=\lim _{m\rightarrow \infty }V(\beta _{m},x;\,c,f)\quad V^{\prime \prime }(x)=\lim _{n\rightarrow \infty }V(\alpha _{n}+\beta _{n},x;\,c,f) \end{equation*}

locally uniformly in $x\in \Omega$ . Therefore,

(4.5) \begin{equation} V(t,x;\,v^{\prime },c^{\prime },f^{\prime })=\lim _{m\rightarrow \infty }V(t+\beta _{m},x;\,c,f),\quad V(t,x;\,v^{\prime \prime },c^{\prime \prime },f^{\prime \prime })=\lim _{n\rightarrow \infty }V(t+\alpha _{n}+\beta _{n},x;\,c,f) \end{equation}

locally uniformly in $(t,x)\in \mathbb{R}\times \Omega$ , where $V(t,x;\,v^{\prime },c^{\prime },f^{\prime })$ and $V(t,x;\,v^{\prime \prime },c^{\prime \prime },f^{\prime \prime })$ are bounded positive entire solution of (4.1) with $c$ and $f$ replaced by $c^{\prime },f^{\prime }$ and $c^{\prime \prime },f^{\prime \prime }$ , respectively. By Lemma 4.1,

\begin{equation*} \inf _{\mathbb{R}\times [{-}L,L]\times \omega }V(t,x;\,v^{\prime },c^{\prime },f^{\prime })\gt 0\quad \text{and}\quad \inf _{\mathbb{R}\times [{-}L,L]\times \omega }V(t,x;\,v^{\prime \prime },c^{\prime \prime },f^{\prime \prime })\gt 0 \end{equation*}

for all $L\gt 0$ .

Let

\begin{equation*} V^{\prime }(t,x)\,:\!=\,\lim _{n\rightarrow \infty }V(t+\alpha _{n},x;\,v^{\prime },c^{\prime },f^{\prime }) \end{equation*}

locally uniformly in $(t,x)\in \mathbb{R}\times \Omega$ . Since $\lim _{n\rightarrow \infty }c^{\prime }\cdot \alpha _{n}=c^{\prime \prime }$ , then $V^{\prime }$ is a bounded positive entire solutions of (1.2) with $c$ and $f$ are replaced by $c^{\prime }$ and $f^{\prime }$ , and $\inf _{\mathbb{R}\times [{-}L,L]\times \omega }V^{\prime }\gt 0$ . By the uniqueness of strictly positive solution, see Lemma 4.1, $V^{\prime }(t,x)=V(t+\alpha _{n},x;\,v^{\prime \prime },c^{\prime \prime },f^{\prime \prime })$ . It then follows from (4.5) that

\begin{align*} &\lim _{n\rightarrow \infty }\lim _{m\rightarrow \infty }V(t+\alpha _{n}+\beta _{m},x;\,c,f)\\ =&\lim _{n\rightarrow \infty }V(t+\alpha _{n},x;\,v^{\prime },c^{\prime },f^{\prime })=V(t+\alpha _{n},x;\,v^{\prime \prime },c^{\prime \prime },f^{\prime \prime })\\ =&\lim _{n\rightarrow \infty }V(t+\alpha _{n}+\beta _{n},x;\,c,f) \end{align*}

holds for all $t\in \mathbb{R}$ and uniformly for $x$ in bounded subsets. Hence, by Lemma 4.3, $V(t,x;\,c,f)$ is almost periodic in $t$ uniformly for $x$ in bounded sets.

Next, we show that (4.4) holds true. Let $v_{0}\in X^{+}\setminus \{0\}$ . Assume that the conclusion fails. Then there exist $\varepsilon _{0}\gt 0$ and $\{t_{n}\}\subset (0,\infty )$ satisfying $\lim _{n\rightarrow \infty }t_{n}=\infty$ and $\{(x^{n}_{1},y^{n})\}\subset \Omega$ such that

(4.6) \begin{equation} \left|v\left(t_{n},x^{n}_{1},y^{n};\,v_{0},c,f\right)-V\left(t_{n},x^{n}_{1},y^{n};\,c,f\right)\right|\geq \varepsilon _{0},\quad \forall n\in \Bbb {N}. \end{equation}

It is no loss of generality to assume that $y^{n}$ converges to some $\eta \in \overline {\omega }$ . We may assume without loss of generality that $c\cdot t_{n}\rightarrow c^{\prime }$ as $n\rightarrow \infty$ . When $\lim _{n\rightarrow \infty }|x^{n}_{1}|=\infty$ , by (3.3), we must have $\lim _{n\rightarrow \infty }V(t_{n},x^{n}_{1},y^{n};\,c,f)=0$ and $\lim _{n\rightarrow \infty }v(t_{n},x^{n}_{1},y^{n};\,v_{0},c,f)=0$ , which is a contradiction with (4.6). When $\{x^{n}_{1}\}$ is bounded, set $x^{n}_{1}\rightarrow x^{\prime }_{1}$ as $n\rightarrow \infty$ . By standard parabolic estimates, we may assume that

\begin{equation*} v\left(t+t_{n},x_{1},y;\,v_{0},c,f\right)\rightarrow v_{1}\left(t,x_{1},y;\,c^{\prime },f^{\prime }\right)\quad \text{and}\quad V(t+t_{n},x_{1},y;\,c,f)\rightarrow v_{2}(t,x_{1},y;\,c^{\prime },f^{\prime }) \end{equation*}

locally uniformly in $t\in \mathbb{R}$ and $(x_{1},y)\in \Omega$ , respectively. Then, $v_{i}(t,x_{1},y;\,c^{\prime },f^{\prime })\,(i=1,2)$ are bounded positive entire solution of (4.1) with $c$ and $f$ replaced by $c^{\prime }$ and $f^{\prime }$ . Moreover, $\inf _{\mathbb{R}\times [{-}L,L]\times \omega }v_{i}(\cdot ,\cdot ,\cdot ;\,c^{\prime },f^{\prime })\gt 0$ for all $L\gt 0$ . The uniqueness in Lemma 4.1 implies that $v_{1}(t,x_{1},y;\,c^{\prime },f^{\prime })=v_{2}(t,x_{1},y;\,c^{\prime },f^{\prime })$ for all $t\in \mathbb{R}$ and $(x_{1},y)\in \Omega$ . By (4.6) again, when $n\rightarrow \infty$ , there is $|v_{1}(0,x^{\prime }_{1},\eta ;\,c^{\prime })-v_{2}(0,x^{\prime }_{1},\eta ;\,c^{\prime })|\geq \varepsilon _{0}$ . This is a contradiction. Hence, (4.4) holds true. This completes the proof.

In the following, we will mainly study the effects of fluctuations on the shifting speed and the exponential decay of the forced wave solution $V(t,x_{1},y)$ of (4.1). Assume the shifting speed function $c(t)=c+\sigma (t)$ for some fluctuations $\sigma (t)$ . We would like to see if the fluctuation $\sigma (t)$ can drive the species to extinction and how large it needs to be in order to make this happen. Consider the following specified model

(4.7) \begin{equation} \begin{cases} \partial _{t}u=\Delta u+f\left (t,x_{1}-ct-A\int ^{t}_{0}\sigma (s)ds,y,u\right ),\, t\gt 0,x\in \Omega ,\\[3pt] \partial _{\nu }u(t,x)=0,\quad t\gt 0,x\in \partial \Omega , \end{cases} \end{equation}

where $c\gt 0$ , $A\geq 0$ and $\sigma \,:\,\mathbb{R}\rightarrow \mathbb{R}$ is Holder continuous. The linearisation of (4.7) in the moving frame around the extinction state $0$ is

(4.8) \begin{equation} \begin{cases} \partial _{t}w=\Delta w+[c+A\sigma (t)]\partial _{1}w+g(t,x,0)w,\quad x\in \Omega ,\\[3pt] \partial _{\nu }w=0,\quad \text{on }\partial \Omega . \end{cases} \end{equation}

Here, $A\sigma (t)$ is the fluctuation on the shifting speed $c$ and the parameter $A$ characterises the amplitude if fluctuations.

Define $\lambda ^{A}$ the principal Lyapunov exponent of (4.8) and $\lambda ^{A}_{L}$ restricted on $({-}L,L)$ . Then, $\lambda ^{A}_{\infty }=\lim _{L\rightarrow \infty }\lambda ^{A}_{L}$ and $\lambda ^{A}_{L}\leq \lambda ^{A}$ . Let $\lambda (\Omega )$ is the generalised Neumann principal eigenvalue of the following problem

\begin{equation*} \begin{cases} -(\Delta \phi +c\partial _{1}\phi )=\lambda (\Omega )\phi ,\quad x\in \mathbb{R}\times \omega ,\\[3pt] \partial _{\nu }\phi =0,\quad x\in \mathbb{R}\times \partial \omega \end{cases} \end{equation*}

and we refer to see Remark 2.1(2) for the definition of generalised Neumann principal eigenvalue.

Theorem 4.2. (1) If $A=0$ , then there is a critical speed $c^{*}\gt 0$ such that $\lambda ^{0}_{\infty }(c)\gt 0$ for $c\in [0,c^{*})$ and $\lambda ^{0}_{\infty }(c)\lt 0$ for $c\gt c^{*}$ .

(2) If $A\neq 0$ , assume that $\sigma (t)$ and $f(t,x,u)$ are periodic in $t$ . Then

\begin{equation*} \lambda ^{A}_{\infty }\geq -\lambda (\Omega )+\inf _{t\in \mathbb{R},x\in \Omega }g(t,x,0). \end{equation*}

Proof. (1) When $A=0$ , by the Liouville transformation $v(t,x_{1},y)=u(t,x_{1},y)e^{\frac {c}{2}x_{1}}$ , problem (4.1) reduces to

(4.9) \begin{equation} \begin{cases} \partial _{t}v=\Delta v+f\left (t,x_{1},y,v(t,x_{1},y)e^{-\frac {c}{2}x_{1}}\right )e^{\frac {c}{2}x_{1}}-\frac {c^{2}}{4}v,\, t\gt 0,x\in \Omega ,\\[3pt] \partial _{\nu }v(t,x)=0,\quad t\gt 0,x\in \partial \Omega . \end{cases} \end{equation}

The associated linearised problem associated with (4.9) is

(4.10) \begin{equation} \begin{cases} \partial _{t}w=\Delta w+g(t,x,0)w-\frac {c^{2}}{4}w,\, t\gt 0,x\in \Omega ,\\[3pt] \partial _{\nu }w(t,x)=0,\quad t\gt 0,x\in \partial \Omega . \end{cases} \end{equation}

Let $\lambda ^{0}_{\infty }(0)$ is the principal Lyapunov exponent of

(4.11) \begin{equation} \begin{cases} \partial _{t}w=\Delta w+g(t,x,0)w,\, t\gt 0,x\in \Omega ,\\[3pt] \partial _{\nu }w(t,x)=0,\quad t\gt 0,x\in \partial \Omega . \end{cases} \end{equation}

Then

\begin{equation*} \lambda ^{0}_{\infty }(c)=\lambda ^{0}_{\infty }(0)-\frac {c^{2}}{4}. \end{equation*}

Define

\begin{equation*} c^{*}= \begin{cases} 2\sqrt {\lambda ^{0}_{\infty }}\quad \text{if }\lambda ^{0}_{\infty }\gt 0,\\[4pt] 0\quad \text{otherwise }. \end{cases} \end{equation*}

It then follows that $\lambda ^{0}_{\infty }(c)\gt 0$ for $c\in [0,c^{*})$ and $\lambda ^{0}_{\infty }(c)\lt 0$ for $c\gt c^{*}$ .

(2) Fix $A\gt 0$ . Note that $\sigma (t)$ and $f(t,x,u)$ are periodic in $t$ . Then $\lambda ^{A}_{L}$ is the principal eigenvalue of (4.10) on $({-}L,L)\times \Omega$ and $t\in \mathbb{R}$ . Then

(4.12) \begin{equation} \lambda ^{A}_{L}\geq \Lambda _{L}+\inf _{t\in \mathbb{R},x\in \Omega }g(t,x,0), \end{equation}

where $\Lambda _{L}$ is the principal eigenvalue of

\begin{equation*} \begin{cases} \partial _{t}w=\Delta w+[c+A\sigma (t)]\partial _{1}w,\quad x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }w=0,\quad x\in ({-}L,L)\times \partial \omega ,\\ w(t,L,y)=w(t,-L,y)=0,\quad y\in \omega \end{cases} \end{equation*}

and $\phi _{L}(t,x_{1},y)$ is the periodic eigenfunction corresponding to $\Lambda _{L}$ . Set

\begin{equation*} z=x_{1}+A\int ^{t}_{0}\sigma (s)ds \quad \text{and}\quad \Phi _{L}(t,z,y)=\phi _{L}(t,x_{1},y). \end{equation*}

Then $\Phi _{L}(t,z,x)$ is a periodic function defined on periodic domain

\begin{equation*} D_{T}=\cup _{t\in \mathbb{R}}\left (\{t\}\times [{-}L+A\int ^{t}_{0}\sigma (s)ds,L+A\int ^{t}_{0}\sigma (s)ds]\times \omega \right ) \end{equation*}

and $\Phi _{L}(t,z,x)$ also satisfies

\begin{equation*} \begin{cases} \partial _{t}\Phi _{L}=\Delta \Phi _{L}+c\partial _{1}\Phi _{L}-\Lambda _{L}\Phi _{L},\quad x\in ({-}L,L)\times \omega ,\\ \partial _{\nu }\Phi _{L}=0,\quad x\in ({-}L,L)\times \partial \omega ,\\ \Phi _{L}(t,L,y)=\Phi _{L}(t,-L,y)=0,\quad y\in \omega . \end{cases} \end{equation*}

Let $\widetilde {L}\gt 0$ large such that $\mathbb{R}\times [{-}\widetilde {L}-1,\widetilde {L}+1]\times \omega \subset D_{T}$ . Moreover, $\widetilde {L}\rightarrow \infty$ as $L\rightarrow \infty$ . Then on $\mathbb{R}\times [{-}\widetilde {L}-1,\widetilde {L}+1]\times \omega$ , we find that $\Phi _{L}$ is periodic in $t$ and $\inf \Phi _{L}\gt 0$ and

\begin{equation*} \begin{cases} \partial _{t}\Phi _{L}=\Delta \Phi _{L}+c\partial _{1}\Phi _{L}-\Lambda _{L}\Phi _{L},\quad [{-}\widetilde {L}-1,\widetilde {L}+1]\times \omega ,\\ \partial _{\nu }\Phi _{L}=0,\quad x\in ({-}L,L)\times \partial \omega . \end{cases} \end{equation*}

Set $\widetilde {\Lambda }_{L}$ is the principal eigenvalue of

\begin{equation*} \begin{cases} \Delta \phi +c\partial _{1}\phi =\widetilde {\Lambda }\phi ,\quad x\in ({-}\widetilde {L},\widetilde {L})\times \omega ,\\ \partial _{\nu }\phi _{L}=0,\quad x\in ({-}\widetilde {L},\widetilde {L})\times \partial \omega ,\\ \phi (\widetilde {L},y)=\phi ({-}\widetilde {L},y)=0,\quad y\in \omega . \end{cases} \end{equation*}

Then the comparison principal implies that $\Lambda _{L}\geq \widetilde {\Lambda }_{L}$ . By (4.12), we get

\begin{equation*} \lambda ^{A}_{L}\geq \widetilde {\Lambda }_{L}+\inf _{t\in \mathbb{R},x\in \Omega }g(t,x,0). \end{equation*}

Following from [Reference Berestycki and Rossi3, Proposition 1], we have that $\lim _{L\rightarrow \infty }\widetilde {\lambda }_{L}$ exists and $\lim _{L\rightarrow \infty }\widetilde {\lambda }_{L}=-\lambda (\Omega )$ . Thus, we obtain that $\lambda ^{A}_{\infty }\geq -\lambda (\Omega )+\inf _{t\in \mathbb{R},x\in \Omega }g(t,x,0).$ This completes the proof.

In order to use Theorem 4.2(1), let $V(t,x_{1},y)$ be the forced wave solution of (4.1) with $c(t)\equiv c$ , that is $A=0$ .

Lemma 4.3. Let $v(t,x_{1},y)\in W^{1,2}_{N+1,loc}(\mathbb{R}\times \Omega _{L})$ with $\partial _{\nu }v\leq 0$ on $\mathbb{R}\times \partial \Omega$ for every $L\gt 0$ and let $C,\gamma \gt 0$ be such that

\begin{equation*} \forall (t,x_{1},y)\in \mathbb{R}\times \Omega ,\quad 0\lt v(t,x_{1},y)\leq Ce^{\sqrt {\gamma }|x_{1}|}, \end{equation*}
\begin{equation*} \limsup _{|x_{1}|\rightarrow \infty }\frac {\partial _{t}v-\Delta v(t,x_{1},y)}{v(t,x_{1},y)}\lt -\gamma \end{equation*}

uniformly in $t\in \mathbb{R}$ and $y\in \omega$ . Then there exists a constant $\kappa \gt 0$ such that

(4.13) \begin{equation} \forall (t,x_{1},y)\in \mathbb{R}\times \Omega ,\quad v(t,x_{1},y)\leq \kappa e^{-\sqrt {\gamma }|x_{1}|}. \end{equation}

Proof. The proof is similar to that in [Reference Berestycki and Rossi3]. For sake of completeness, we include the proof here. By the hypotheses on $v$ , there exist $\varepsilon \gt 0$ and $L\gt 0$ such that

\begin{equation*} \partial _{t}v-\Delta v\lt ({-}\gamma -2\varepsilon )v \end{equation*}

for a.e. $t\in \mathbb{R}$ and $(x_{1},y)\in \Omega \setminus \overline {\Omega }_{L}$ . We list the following functions as that in [Reference Berestycki and Rossi3, Lemma 3.2]. For $a\gt 0$ , let $\theta _{a}\,:\,[L,L+a]\rightarrow \mathbb{R}$ be the solution to

(4.14) \begin{equation} \begin{cases} \theta ^{\prime \prime }=(\gamma +\varepsilon )\theta ,\quad \text{in }(L,L+a),\\ \theta (L)=ke^{\sqrt {\gamma }L},\\ \theta (L+a)=ke^{\sqrt {\gamma }(L+a)}. \end{cases} \end{equation}

Hence, $\theta _{a}(\rho )=A_{a}e^{-\sqrt {\gamma +\varepsilon }\rho }+B_{a}e^{\sqrt {\gamma +\varepsilon }\rho }$ , $\rho \in [L,L+a]$ with

\begin{equation*} A_{a}=ke^{(\sqrt {\gamma }+\sqrt {\gamma +\varepsilon })L}\left (1-\frac {e^{\sqrt {\gamma }a}-e^{-\sqrt {\gamma +\varepsilon }a}}{e^{\sqrt {\gamma +\varepsilon }a}-e^{-\sqrt {\gamma +\varepsilon }a}}\right ) \end{equation*}

and

\begin{equation*} B_{a}=ke^{(\sqrt {\gamma }-\sqrt {\gamma +\varepsilon })L}\left (1-\frac {e^{\sqrt {\gamma }a}-e^{-\sqrt {\gamma +\varepsilon }a}}{e^{\sqrt {\gamma +\varepsilon }a}-e^{-\sqrt {\gamma +\varepsilon }a}}\right ). \end{equation*}

Fix $\tau \in \mathbb{R}$ and define

\begin{equation*} \theta _{a}(t,x_{1},y)\,:\!=\,\theta _{a}(|x_{1}|)+(\tau -t)\delta _{a}, \end{equation*}

where

\begin{equation*} \delta _{a}=\frac {\varepsilon }{2}\min _{[L,L+a]\times \omega }\theta _{a}\gt 0. \end{equation*}

By the similar computation in [Reference Berestycki and Rossi2, Lemma 3.2],

(4.15) \begin{equation} \begin{cases} \partial _{t}\theta _{a}\geq \Delta \theta _{a}-(\gamma +2\varepsilon )\theta _{a},\quad t\in ({-}\infty ,\tau ), (x_{1},y)\in (L,L+a)\times \omega ,\\ \partial _{\nu }\theta _{a}=0,\quad t\in ({-}\infty ,\tau ), (x_{1},y)\in (L,L+a)\times \partial \omega . \end{cases} \end{equation}

Note that $v$ is a subsolution of (4.15) and $v\leq \theta _{a}$ on $\{\pm L,\pm (L+a)\}\times \omega$ , $t\in ({-}\infty ,\tau )$ . Then the comparison principle implies that

\begin{equation*} v\leq \theta _{a}\quad \text{in } (x_{1},y)\in \Omega _{L+a}\setminus \widetilde {\Omega }_{L}, t\lt \tau ,\quad \text{for any }a\gt 0. \end{equation*}

For $|x_{1}|\gt L$ and $y\in \omega$ , we have

\begin{equation*} v(\tau ,x_{1},y)\leq \lim _{a\rightarrow \infty }\theta _{a}(\tau ,x_{1},y)=ke^{\sqrt {\gamma }+\sqrt {\gamma +\varepsilon }L}e^{-\sqrt {\gamma +\varepsilon }|x_{1}|}. \end{equation*}

Due to the arbitrarily of $\tau$ , we obtain that (4.13) holds true. This completes the proof.

Theorem 4.3. Assume that (H1)-(H4) hold true. Let $V(t,x_{1},y)$ be a solution of (4.1) with $c(t)\equiv c$ . Then there exist two constants $h$ and $\beta \gt 0$ such that

\begin{equation*} \forall (t,x_{1},y)\in \mathbb{R}\times \Omega . \quad V(t,x_{1},y)\leq he^{-\beta |x_{1}|}. \end{equation*}

Proof. The function $v(t,x_{1},y)=V(t,x_{1},y)e^{\frac {c}{2}x_{1}}$ is a solution of (4.9). Hence,

\begin{equation*} \frac {\partial _{t}v-\Delta v(t,x_{1},y)}{v(t,x_{1},y)}=\zeta (t,x_{1},y)-\frac {c^{2}}{4} \end{equation*}

for $t\in \mathbb{R}$ and $(x_{1},y)\in \Omega$ , where $\zeta (t,x_{1},y)\leq g(t,x_{1},y,0)$ .

Set $\zeta =-\lim _{r\rightarrow \infty }\sup _{|x_{1}|\gt r,t\in \mathbb{R},y\in \omega }g(t,x_{1},y,0)$ and (H4) implies $\zeta \gt 0$ . Then for $\gamma \in (\frac {c^{2}}{4},\frac {c^{2}}{4}+\zeta )$ ,

\begin{equation*} \lim _{L\rightarrow \infty }\sup _{|x_{1}|\gt L,y\in \Omega }\frac {\partial _{t}v-\Delta v(t,x_{1},y)}{v(t,x_{1},y)}\leq \lim _{L\rightarrow \infty }\sup _{|x_{1}|\gt L,y\in \Omega }g(t,x_{1},y,0)-\frac {c^{2}}{4}\leq -\zeta -\frac {c^{2}}{4}\lt -\gamma . \end{equation*}

On the other hand, $v(t,x_{1},y)e^{-\sqrt {\gamma }|x_{1}|}\leq v(t,x_{1},y)e^{-\frac {c}{2}|x_{1}|}$ , which is bounded. Then by Lemma 4.3, there exist two constants $h$ and $\beta \gt 0$ such that

\begin{equation*} V(t,x_{1},y)=v(t,x_{1},y)e^{-\frac {c}{2}x_{1}}\leq he^{-\sqrt {\gamma }|x_{1}|-\frac {c}{2}|x_{1}|}\leq he^{-\beta |x_{1}|}, \forall (t,x_{1},y)\in \mathbb{R}\times \Omega . \end{equation*}

This completes the proof.

Acknowledgements

The authors would like to thank the referee for valuable comments and suggestions that improved the presentation of this manuscript.

Funding support

Xiongxiong Bao was partially supported by NSF of China (12271058) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (23JSY040). Dun Zhou was partially supported by NSF of China (12331006).

Competing interest

The authors declare no competing interests.

References

Berestycki, H., Diekmann, O., Nagelkerke, C. J. & Zegeling, P. A. (2009) Can a species keep pace with a shifting climate? Bull. Math. Biol. 71(2), 399429.10.1007/s11538-008-9367-5CrossRefGoogle ScholarPubMed
Berestycki, H. & Rossi, L. (2008) Reaction-diffusion equations for population dynamics with force speed. I. The case of the whole space. Discrete Contin. Dyn. Syst. 21, 4167.10.3934/dcds.2008.21.41CrossRefGoogle Scholar
Berestycki, H. & Rossi, L. (2009) Reaction-diffusion equations for population dynamics with force speed. II. Cylindrical type domains. Discrete Contin. Dyn. Syst. 25, 1961.10.3934/dcds.2009.25.19CrossRefGoogle Scholar
Berestycki, H., Desvillettes, L. & Diekmann, O. (2014) Can climate change lead to gap formation? Ecol. Complex. 20, 264270.10.1016/j.ecocom.2014.10.006CrossRefGoogle Scholar
Berestycki, H. & Fang, J. (2018) Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ. 264, 21572183.10.1016/j.jde.2017.10.016CrossRefGoogle Scholar
Bouhours, J. & Giletti, T. (2019) Spreading and vanishing for a monostable reaction diffusion equation with forced speed. J. Dyn. Differ. Equ. 31, 247286.10.1007/s10884-018-9643-5CrossRefGoogle Scholar
Du, Y., Wei, L. & Zhou, L. (2018) Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary. J. Dyn. Differ. Equ. 30, 13891426.10.1007/s10884-017-9614-2CrossRefGoogle Scholar
Fang, J., Lou, Y. & Wu, J. (2016) Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 16331657.10.1137/15M1029564CrossRefGoogle Scholar
Fang, J., Peng, R. & Zhao, X.-Q. (2021) Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. J. Math. Pures Appl. 147, 128.10.1016/j.matpur.2021.01.001CrossRefGoogle Scholar
Fink, A. M. (1974). Almost Periodic Differential Equations, Lecture Notes in Mathematics No 377, Springer-Verlag, New York.10.1007/BFb0070324CrossRefGoogle Scholar
Hu, C. & Li, B. (2015) Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 19671989.10.1016/j.jde.2015.03.025CrossRefGoogle Scholar
Huston, V., Shen, W. & Vickers, G. T. (2008) Spectral theory for nonlocal dispersal with periodic or almost periodic time dependence. Rocky Mt. J. Math. 38, 11471175.Google Scholar
Hu, C., Shang, J. & Li, B. (2020) Spreading speeds for reaction-diffusion equations with a shifting habitat. J. Dyn. Differ. Equ. 32, 19411964.10.1007/s10884-019-09796-5CrossRefGoogle Scholar
Kingman, J. F. C. (1973) Subadditive Ergodic theory. Ann. Probab. 1, 883909.10.1214/aop/1176996798CrossRefGoogle Scholar
Lewis, M. A., Marculis, N. G. & Shen, Z. (2018) Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics. J. Math. Biol. 77, 16491687.10.1007/s00285-018-1206-1CrossRefGoogle ScholarPubMed
Mierczyński, J. & Shen, W. (2013) Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General Theory, Trans. Amer. Math. Soc. 365, 53295365.10.1090/S0002-9947-2013-05814-XCrossRefGoogle Scholar
Mierczyński, J. & Shen, W. (2013) Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems. J. Math. Anal. Appl. 404, 438458.10.1016/j.jmaa.2013.03.039CrossRefGoogle Scholar
Mierczyński, J. & Shen, W. (2008). Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications. In Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., Vol. 139, CRC Press, BocaRaton. FL.Google Scholar
Marek, I. (1970) Frobenius theory of positive operators: Comparison theorems and applications. SIAM J. Appl. Math. 19, 607628.10.1137/0119060CrossRefGoogle Scholar
Li, W.-T., Wang, J.-B. & Zhao, X.-Q. (2018) Spatial dynamics of nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 11891219.10.1007/s00332-018-9445-2CrossRefGoogle Scholar
Li, B., Bewick, S., Shang, J. & Fagan, W. F. (2014) Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74, 13971417.10.1137/130938463CrossRefGoogle Scholar
Potapov, A. B. & Lewis, M. A. (2004) Climate and competition: The effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 9751008.10.1016/j.bulm.2003.10.010CrossRefGoogle ScholarPubMed
Shen, W. (2010) Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP model. Trans. Amer. Math. Soc. 362, 51255168.10.1090/S0002-9947-10-04950-0CrossRefGoogle Scholar
Shen, W. & Yi, Y. (1998) Almost automprphic and almost periodic dynamics in skew-product semiflows, Part II. Skew-product. Mem. Amer. Math. Soc. 136(647).Google Scholar
Shen, W. & Yi, Y. (1998) Almost automprphic and almost periodic dynamics in skew-product semiflows, Part III. Application to differential equations. Mem. Amer. Math. Soc. 136(647).Google Scholar
Shen, W., Shen, Z., Xue, S. & Zhou, D. (2022) Population dynamics under climate change: Persistence criterion and effects of fluctuations. J. Math. Biol. 84.10.1007/s00285-022-01728-0CrossRefGoogle ScholarPubMed
Vo, H.-H. (2015) Persistence versus extinction under a climate change in mixed environments. J. Differ. Equ. 259, 49474988.10.1016/j.jde.2015.06.014CrossRefGoogle Scholar
Wang, J.-B., Li, W.-T., Dong, F.-D. & Qiao, S.-X. (2022) Recent developments on spatial propagation for diffusion equations in shifting environments. Discrete Contin. Dyn. Syst. Ser. B. 27, 51015127.10.3934/dcdsb.2021266CrossRefGoogle Scholar
Yi, Y. (1998) Almost automprphic and almost periodic dynamics in skew-product semiflows, Part I. Almost automorphy and almost periodicity. Mech. Amer. Math. Soc. 136(647).Google Scholar
Zhang, G.-B. & Zhao, X.-Q. (2019) Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J. Differ. Equ. 268, 28522885.10.1016/j.jde.2019.09.044CrossRefGoogle Scholar
Zhang, L. & Zhao, X.-Q. (2025) Spreading properties and forced traveling waves of reaction-diffusion equations in a time-heterogeneous shifting environment. J. Math. Pures Appl. 203, 103759.10.1016/j.matpur.2025.103759CrossRefGoogle Scholar
Zhao, X.-Q. (2003) Global attractivity in monotone and subhomogenous almost periodic systems. J. Differ. Equ. 187, 494509.10.1016/S0022-0396(02)00054-2CrossRefGoogle Scholar