We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on .
Jannsen asked whether the rational cycle class map in continuous
$\ell $
-adic cohomology is injective, in every codimension for all smooth projective varieties over a field of finite type over the prime field. As recently pointed out by Schreieder, the integral version of Jannsen’s question is also of interest. We exhibit several examples showing that the answer to the integral version is negative in general. Our examples also have consequences for the coniveau filtration on Chow groups and the transcendental Abel-Jacobi map constructed by Schreieder.
In this paper, we show the existence of an action of Chow correspondences on the cohomology of reciprocity sheaves. In order to do so, we prove a number of structural results, such as a projective bundle formula, a blow-up formula, a Gysin sequence and the existence of proper pushforward. In this way, we recover and generalise analogous statements for the cohomology of Hodge sheaves and Hodge-Witt sheaves.
We give several applications of the general theory to problems which have been classically studied. Among these applications, we construct new birational invariants of smooth projective varieties and obstructions to the existence of zero cycles of degree 1 from the cohomology of reciprocity sheaves.
We fix an error on a
$3$
-cocycle in the original version of the paper ‘Endoscopy for Hecke categories, character sheaves and representations’. We give the corrected statements of the main results.
For a reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $H$ with trivial monodromy. We also extend this equivalence to all blocks. We give two applications. One is a relationship between character sheaves on $G$ with a fixed semisimple parameter and unipotent character sheaves on the endoscopic group $H$, after passing to asymptotic versions. The other is a similar relationship between representations of $G(\mathbb{F}_{q})$ with a fixed semisimple parameter and unipotent representations of $H(\mathbb{F}_{q})$.
We introduce and study various categories of (equivariant) motives of (versal) flag varieties. We relate these categories with certain categories of parabolic (Demazure) modules. We show that the motivic decomposition type of a versal flag variety depends on the direct sum decomposition type of the parabolic module. To do this we use localization techniques of Kostant and Kumar in the context of generalized oriented cohomology as well as the Rost nilpotence principle for algebraic cobordism and its generic version. As an application, we obtain new proofs and examples of indecomposable Chow motives of versal flag varieties.
We study the equivariant oriented cohomology ring $\mathtt{h}_{T}(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott–Samelson classes in $\mathtt{h}_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results of Chow groups by Brion, Knutson, Peterson, Tymoczko and others. Our main result concerns the equivariant oriented cohomology theory $\mathfrak{h}$ corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhar’s parabolic Kazhdan–Lusztig basis, i.e., we realize it as some cohomology classes (the parabolic Kazhdan–Lusztig (KL) Schubert classes) in $\mathfrak{h}_{T}(G/P)$. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We also prove the latter in several special cases.
We compare two cohomological Hall algebras (CoHA). The first one is the preprojective CoHA introduced in [19] associated with each quiver Q, and each algebraic oriented cohomology theory A. It is defined as the A-homology of the moduli of representations of the preprojective algebra of Q, generalizing the K-theoretic Hall algebra of commuting varieties of Schiffmann-Vasserot [15]. The other one is the critical CoHA defined by Kontsevich-Soibelman associated with each quiver with potentials. It is defined using the equivariant cohomology with compact support with coefficients in the sheaf of vanishing cycles. In the present paper, we show that the critical CoHA, for the quiver with potential of Ginzburg, is isomorphic to the preprojective CoHA as algebras. As applications, we obtain an algebra homomorphism from the positive part of the Yangian to the critical CoHA.
This paper sets up the foundations for derived algebraic geometry, Goerss–Hopkins obstruction theory, and the construction of commutative ring spectra in the abstract setting of operadic algebras in symmetric spectra in an (essentially) arbitrary model category. We show that one can do derived algebraic geometry a la Toën–Vezzosi in an abstract category of spectra. We also answer in the affirmative a question of Goerss and Hopkins by showing that the obstruction theory for operadic algebras in spectra can be done in the generality of spectra in an (essentially) arbitrary model category. We construct strictly commutative simplicial ring spectra representing a given cohomology theory and illustrate this with a strictly commutative motivic ring spectrum representing higher order products on Deligne cohomology. These results are obtained by first establishing Smith’s stable positive model structure for abstract spectra and then showing that this category of spectra possesses excellent model-theoretic properties: we show that all colored symmetric operads in symmetric spectra valued in a symmetric monoidal model category are admissible, i.e., algebras over such operads carry a model structure. This generalizes the known model structures on commutative ring spectra and $\text{E}_{\infty }$-ring spectra in simplicial sets or motivic spaces. We also show that any weak equivalence of operads in spectra gives rise to a Quillen equivalence of their categories of algebras. For example, this extends the familiar strictification of $\text{E}_{\infty }$-rings to commutative rings in a broad class of spectra, including motivic spectra. We finally show that operadic algebras in Quillen equivalent categories of spectra are again Quillen equivalent. This paper is also available at arXiv:1410.5699v2.
Let $\overline{X}$ be a separated scheme of finite type over a field $k$ and $D$ a non-reduced effective Cartier divisor on it. We attach to the pair $(\overline{X},D)$ a cycle complex with modulus, those homotopy groups – called higher Chow groups with modulus – generalize additive higher Chow groups of Bloch–Esnault, Rülling, Park and Krishna–Levine, and that sheafified on $\overline{X}_{\text{Zar}}$ gives a candidate definition for a relative motivic complex of the pair, that we compute in weight $1$. When $\overline{X}$ is smooth over $k$ and $D$ is such that $D_{\text{red}}$ is a normal crossing divisor, we construct a fundamental class in the cohomology of relative differentials for a cycle satisfying the modulus condition, refining El Zein’s explicit construction of the fundamental class of a cycle. This is used to define a natural regulator map from the relative motivic complex of $(\overline{X},D)$ to the relative de Rham complex. When $\overline{X}$ is defined over $\mathbb{C}$, the same method leads to the construction of a regulator map to a relative version of Deligne cohomology, generalizing Bloch’s regulator from higher Chow groups. Finally, when $\overline{X}$ is moreover connected and proper over $\mathbb{C}$, we use relative Deligne cohomology to define relative intermediate Jacobians with modulus $J_{\overline{X}|D}^{r}$ of the pair $(\overline{X},D)$. For $r=\dim \overline{X}$, we show that $J_{\overline{X}|D}^{r}$ is the universal regular quotient of the Chow group of $0$-cycles with modulus.
Let $G$ denote a reductive algebraic group over $\mathbb{C}$ and $x$ a nilpotent element of its Lie algebra $\mathfrak{g}$. The Springer variety ${{B}_{x}}$ is the closed subvariety of the flag variety $B$ of $G$ parameterizing the Borel subalgebras of $\mathfrak{g}$ containing $x$. It has the remarkable property that the Weyl group $W$ of $G$ admits a representation on the cohomology of ${{B}_{x}}$ even though $W$ rarely acts on ${{B}_{x}}$ itself. Well-known constructions of this action due to Springer and others use technical machinery from algebraic geometry. The purpose of this note is to describe an elementary approach that gives this action when $x$ is what we call parabolic-surjective. The idea is to use localization to construct an action of $W$ on the equivariant cohomology algebra $H_{s}^{*}({{B}_{x}})$, where $S$ is a certain algebraic subtorus of $G$. This action descends to ${{H}^{*}}({{B}_{x}})$ via the forgetful map and gives the desired representation. The parabolic-surjective case includes all nilpotents of type $A$ and, more generally, all nilpotents for which it is known that $W$ acts on $H_{s}^{*}({{B}_{x}})$ for some torus $S$. Our result is deduced from a general theorem describing when a group action on the cohomology of the ûxed point set of a torus action on a space lifts to the full cohomology algebra of the space.
Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.
We introduce techniques of Suslin, Voevodsky, and others into the study of singular varieties. Our approach is modeled after Goresky–MacPherson intersection homology. We provide a formulation of perversity cycle spaces leading to perversity homology theory and a companion perversity cohomology theory based on generalized cocycle spaces. These theories lead to conditions on pairs of cycles which can be intersected and a suitable equivalence relation on cocycles/cycles enabling pairings on equivalence classes. We establish suspension and splitting theorems, as well as a localization property. Some examples of intersections on singular varieties are computed.
Let $k=\mathbb{C}$ be the field of complex numbers. In this article we construct Hodge realization functors defined on the triangulated categories of étale motives with rational coefficients. Our construction extends to every smooth quasi-projective $k$-scheme, the construction done by Nori over a field, and relies on the original version of the basic lemma proved by Beĭlinson. As in the case considered by Nori, the realization functor factors through the bounded derived category of a perverse version of the Abelian category of Nori motives.
The algebraic cobordism group of a scheme is generated by cycles that are proper morphisms
from smooth quasiprojective varieties. We prove that over a field of characteristic zero the quasiprojectivity assumption can be omitted to get the same theory.
The goal of this paper is to prove that if certain ‘standard’ conjectures on motives over algebraically closed fields hold, then over any ‘reasonable’ scheme $S$ there exists a motivic$t$-structure for the category $\text{DM}_{c}(S)$ of relative Voevodsky’s motives (to be more precise, for the Beilinson motives described by Cisinski and Deglise). If $S$ is of finite type over a field, then the heart of this $t$-structure (the category of mixed motivic sheaves over $S$) is endowed with a weight filtration with semisimple factors. We also prove a certain ‘motivic decomposition theorem’ (assuming the conjectures mentioned) and characterize semisimple motivic sheaves over $S$ in terms of those over its residue fields. Our main tool is the theory of weight structures. We actually prove somewhat more than the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic $t$-structure is transversal to the Chow weight structure for $\text{DM}_{c}(S)$ (that was introduced previously by Hébert and the author). We also deduce several properties of mixed motivic sheaves from this fact. Our reasoning relies on the degeneration of Chow weight spectral sequences for ‘perverse étale homology’ (which we prove unconditionally); this statement also yields the existence of the Chow weight filtration for such (co)homology that is strictly restricted by (‘motivic’) morphisms.
We construct a variant of Karoubi’s relative Chern character for smooth separated schemes over the ring of integers in a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$-adic field, and prove a comparison with the rigid syntomic regulator. For smooth projective schemes, we further relate the relative Chern character to the étale $p$-adic regulator via the Bloch–Kato exponential map. This reproves a result of Huber and Kings for the spectrum of the ring of integers, and generalizes it to all smooth projective schemes as above.
We study the action of the formal affine Hecke algebra on the formal group algebra, and show that the the formal affine Hecke algebra has a basis indexed by the Weyl group as a module over the formal group algebra. We also define a concept called the normal formal group law, which we use to simplify the relations of the generators of the formal affine Demazure algebra and the formal affine Hecke algebra.
In this article we show that the polylogarithmic currents introduced by Andrey Levin describe the polylogarithm of an abelian scheme at the topological level. From this result, which had been conjectured by Andrey Levin himself, we deduce a method to explicit the Eisenstein classes of abelian schemes at the topological level. These classes are of special interest since they have a motivic origin by a result of Guido Kings. In a forthcoming work entitled ‘Les classes d'Eisenstein des variétés de Hilbert–Blumenthal’, the results of the present article are used to prove that the Eisenstein classes of Hilbert–Blumenthal varieties degenerate at the boundary of the Baily–Borel compactification of the base in a special value of an L-function associated to the underlying totally real number field, and we get as a corollary a non-vanishing result for some of these Eisenstein classes in this geometric situation.