Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:34:54.123Z Has data issue: false hasContentIssue false

Relative Equivariant Motives and Modules

Published online by Cambridge University Press:  08 November 2019

Baptiste Calmès
Affiliation:
Faculté des Sciences Jean Perrin, Université d’Artois, Rue Jean Souvraz SP 18, 62307Lens Cedex, France Email: baptiste.calmes@math.cnrs.fr
Alexander Neshitov
Affiliation:
Department of Mathematics, Western University, Middlesex College, LondonON N6A 5B7 Email: aneshito@uwo.ca
Kirill Zainoulline
Affiliation:
Department of Mathematics and Statistics, University of Ottawa, 150 Louis-Pasteur, OttawaON K1N 6N5 Email: kirill@uottawa.ca

Abstract

We introduce and study various categories of (equivariant) motives of (versal) flag varieties. We relate these categories with certain categories of parabolic (Demazure) modules. We show that the motivic decomposition type of a versal flag variety depends on the direct sum decomposition type of the parabolic module. To do this we use localization techniques of Kostant and Kumar in the context of generalized oriented cohomology as well as the Rost nilpotence principle for algebraic cobordism and its generic version. As an application, we obtain new proofs and examples of indecomposable Chow motives of versal flag varieties.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author B. C. acknowledges the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-BL01-0005. Authors A. N. and K. Z. were partially supported by NSERC Discovery Grants.

References

Anderson, F. and Fuller, K., Rings and categories of modules, Secon ed., Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4612-4418-9CrossRefGoogle Scholar
Calmès, B., Petrov, V., and Zainoulline, K., Invariants, torsion indices and cohomology of complete flags. Ann. Sci. Ecole Norm. Sup. (4) 46(2013), no. 3, 405448. https://doi.org/10.24033/asens.2192CrossRefGoogle Scholar
Calmès, B., Zainoulline, K., and Zhong, C., Push-pull operators on the formal affine Demazure algebra and its dual. Manuscripta Math. 160(2019), no. 1–2, 950. https://doi.org/10.1007/s00229-018-1058-4CrossRefGoogle Scholar
Calmès, B., Zainoulline, K., and Zhong, C., Equivariant oriented cohomology of flag varieties. Doc. Math. 2015, Extra vol.: Alexander S. Merkurjev’s 60th Birthday, 113–144.Google Scholar
Edidin, D. and Graham, W., Equivariant intersection theory. Invent. Math. 131(1998), no. 3, 595634. https://doi.org/10.1007/s002220050214CrossRefGoogle Scholar
Elman, R., Karpenko, N., and Merkurjev, A., Algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56, American Mathematical Society, Providence, 2008. https://doi.org/10.1090/coll/056CrossRefGoogle Scholar
Fulton, W., Intersection theory, Second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, A Series of Modern Surveys in Mathematics, 2, Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-1-4612-1700-8CrossRefGoogle Scholar
Gille, S. and Vishik, A., The Rost Nilpotence and free theories. Documenta Math. 23(2018), 16351657.Google Scholar
Heller, J. and Malagón-López, J., Equivariant algebraic cobordism. J. Reine Angew. Math. 684(2013), 87112.Google Scholar
Karpenko, N., Chow ring of generically twisted varieties of complete flags. Advances in Math. 306(2017), 789806. https://doi.org/10.1016/j.aim.2016.10.037CrossRefGoogle Scholar
Karpenko, N., The Grothendieck Chow-motifs of Severi-Brauer varieties. St. Petersburg Math. J. 7(1996), no. 4, 649661.Google Scholar
Knizel, A. and Neshitov, A., Algebraic analogue of the Atiyah completion theorem. Homology Homotopy Appl. 16(2014), no. 2, 289306. https://doi.org/10.4310/HHA.2014.v16.n2.a16CrossRefGoogle Scholar
Kostant, B. and Kumar, S., T-Equivariant K-theory of generalized flag varieties. J. Differential Geom. 32(1990), 549603.CrossRefGoogle Scholar
Kostant, B. and Kumar, S., The nil Hecke ring and cohomology of G/P for a Kac–Moody group G. Adv. in Math. 62(1986), 187237. https://doi.org/10.1016/0001-8708(86)90101-5CrossRefGoogle Scholar
Krishna, A., The completion problem for equivariant K-theory. J. Reine Angew. Math. 740(2018), 275317. https://doi.org/10.1515/crelle-2015-0063CrossRefGoogle Scholar
Krishna, A., Equivariant cobordism for torus actions. Advances Math. 231(2012), no. 5, 28582891. https://doi.org/10.1016/j.aim.2012.07.025CrossRefGoogle Scholar
Krishna, A., Equivariant cobordism of schemes. Doc. Math. 17(2012), 95134.Google Scholar
Lenart, C., Zainoulline, K., and Zhong, C., Parabolic Kazhdan–Lusztig basis, Schubert classes and equivariant oriented cohomology. J. Inst. Math. Jussieu (2019), 141. https://doi.org/10.1017/S1474748018000592Google Scholar
Levine, M. and Morel, F., Algebraic cobordism. Springer Monographs in Mathematics, Springer, Berlin, 2007.Google Scholar
Neshitov, A., Motivic decompositions and Hecke-type algebras. PhD Thesis, University of Ottawa, 2016. https://doi.org/10.20381/ruor-4976CrossRefGoogle Scholar
Neshitov, A., Petrov, V., Semenov, N., and Zainoulline, K., Motivic decompositions of twisted flag varieties and representations of Hecke-type algebras. Adv. Math. 340(2018), 791818. https://doi.org/10.1016/j.aim.2018.10.014CrossRefGoogle Scholar
Panin, I., On the algebraic K-theory of twisted flag varieties. K-Theory 8(1994), 541585. https://doi.org/10.1007/BF00961020CrossRefGoogle Scholar
Petrov, V. and Semenov, N., Rost motives, affine varieties, and classifying spaces. J. London Math. Soc. 95(2017), no. 3, 895918. https://doi.org/10.1112/jlms.12040CrossRefGoogle Scholar
Petrov, V., Semenov, N., and Zainoulline, K., J-invariant of linear algebraic groups. Ann. Sci. École Norm. Sup. (4) 41(2008), no. 6, 10231053. https://doi.org/10.24033/asens.2088CrossRefGoogle Scholar
Rost, M., The motive of a Pfister form. Preprint, 1998. https://www.math.uni-bielefeld.de/∼rost/motive.html.Google Scholar
Totaro, B., The Chow ring of a classifying space. In: Algebraic K-theory (Seattle, WA, 1997). Proc. Sympos. Pure Math., 67, Amer. Math. Soc., Providence, 1999, pp. 249281. https://doi.org/10.1090/pspum/067/1743244Google Scholar
Vishik, A., Motives of quadrics with applications to the theory of quadratic forms. In: Geometric methods in the algebraic theory of quadratic forms. Proceedings of the summer school, Lens, France, June 2000, Springer, Berlin, 2000.Google Scholar
Vishik, A. and Zainoulline, K., Motivic splitting lemma. Documenta Math. 13(2008), 8196.Google Scholar