We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mirror symmetry for a semistable degeneration of a Calabi–Yau manifold was first investigated by Doran–Harder–Thompson when the degenerate fiber is a union of two quasi-Fano manifolds. They proposed a topological construction of a mirror Calabi–Yau by gluing of two Landau–Ginzburg models that are mirror to those Fano manifolds. We extend this construction to a general type semistable degeneration where the dual boundary complex of the degenerate fiber is the standard N-simplex. Since each component in the degenerate fiber comes with the simple normal crossing anticanonical divisor, one needs the notion of a hybrid Landau–Ginzburg model – a multipotential analogue of classical Landau–Ginzburg models. We show that these hybrid Landau–Ginzburg models can be glued to be a topological mirror candidate for the nearby Calabi–Yau, which also exhibits the structure of a Calabi–Yau fibration over $\mathbb P^N$. Furthermore, it is predicted that the perverse Leray filtration associated to this fibration is mirror to the monodromy weight filtration on the degeneration side [12]. We explain how this can be deduced from the original mirror P=W conjecture [18].
We classify the subpencils of complete linear systems for the hyperplane sections on K3 surfaces obtained as the complete intersection of a hyperquadric and a hypercubic. The classification is done from three points of view, namely, the type of a general fibre, the base locus and the Horikawa index of the essential member. This classification shows the distinct phenomenons depending on the rank of the hyperquadrics containing the surface.
We generalize Bloch’s map on torsion cycles from algebraically closed fields to arbitrary fields. While Bloch’s map over algebraically closed fields is injective for zero-cycles and for cycles of codimension at most two, we show that the generalization to arbitrary fields is only injective for cycles of codimension at most two but, in general, not for zero-cycles. Our result implies that Jannsen’s cycle class map in integral
$\ell $
-adic continuous étale cohomology is, in general, not injective on torsion zero-cycles over finitely generated fields. This answers a question of Scavia and Suzuki.
Let
$(S,L)$
be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system
$|L|$
, that is, for any number of nodes
$\delta =0, \ldots , p_a(L)-1$
. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
The Horikawa index and the local signature are introduced for relatively minimal fibered surfaces whose general fiber is a non-hyperelliptic curve of genus 4 with unique trigonal structure.
An affine variety with an action of a semisimple group G is called “small” if every nontrivial G-orbit in X is isomorphic to the orbit of a highest weight vector. Such a variety X carries a canonical action of the multiplicative group ${\mathbb {K}^{*}}$ commuting with the G-action. We show that X is determined by the ${\mathbb {K}^{*}}$-variety $X^U$ of fixed points under a maximal unipotent subgroup $U \subset G$. Moreover, if X is smooth, then X is a G-vector bundle over the algebraic quotient $X /\!\!/ G$.
If G is of type ${\mathsf {A}_n}$ ($n\geq 2$), ${\mathsf {C}_{n}}$, ${\mathsf {E}_{6}}$, ${\mathsf {E}_{7}}$, or ${\mathsf {E}_{8}}$, we show that all affine G-varieties up to a certain dimension are small. As a consequence, we have the following result. If $n \geq 5$, every smooth affine $\operatorname {\mathrm {SL}}_n$-variety of dimension $< 2n-2$ is an $\operatorname {\mathrm {SL}}_n$-vector bundle over the smooth quotient $X /\!\!/ \operatorname {\mathrm {SL}}_n$, with fiber isomorphic to the natural representation or its dual.
Let
$f: X \to B$
be a relatively minimal fibration of maximal Albanese dimension from a variety X of dimension
$n \ge 2$
to a curve B defined over an algebraically closed field of characteristic zero. We prove that
$K_{X/B}^n \ge 2n! \chi _f$
. It verifies a conjectural formulation of Barja in [2]. Via the strategy outlined in [4], it also leads to a new proof of the Severi inequality for varieties of maximal Albanese dimension. Moreover, when the equality holds and
$\chi _f> 0$
, we prove that the general fibre F of f has to satisfy the Severi equality that
$K_F^{n-1} = 2(n-1)! \chi (F, \omega _F)$
. We also prove some sharper results of the same type under extra assumptions.
In 1977, Gauduchon proved that on every compact hermitian manifold $(X, \omega )$ there exists a conformally equivalent hermitian metric $\omega _\mathrm {G}$ which satisfies $\mathrm {dd}^{\mathrm {c}} \omega _\mathrm {G}^{n-1} = 0$. In this note, we extend this result to irreducible compact singular hermitian varieties which admit a smoothing.
Let
$f\colon X\to B$
be a semistable fibration where X is a smooth variety of dimension
$n\geq 2$
and B is a smooth curve. We give the structure theorem for the local system of the relative
$1$
-forms and of the relative top forms. This gives a neat interpretation of the second Fujita decomposition of
$f_*\omega _{X/B}$
. We apply our interpretation to show the existence, up to base change, of higher irrational pencils and on the finiteness of the associated monodromy representations under natural Castelnuovo-type hypothesis on local subsystems. Finally, we give a criterion to have that X is not of Albanese general type if
$B=\mathbb {P}^1$
.
In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension
$\le 1$
. In this process, we establish the decomposition of Chow groups for the cases of the Cayley trick and standard flips. Moreover, we apply these results to study the Chow groups of symmetric powers of curves, nested Hilbert schemes of surfaces, and the varieties resolving Voisin maps for cubic fourfolds.
We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally unipotent degeneration of compact hyper-Kähler manifolds.
We prove a specialization inequality relating the dimension of the complete linear series on a variety to the tropical complex of a regular semistable degeneration. Our result extends Baker's specialization inequality to arbitrary dimension.
We initiate and develop a framework to handle the specialisation morphism as a filtered morphism for the perverse, and for the perverse Leray filtration, on the cohomology with constructible coefficients of varieties and morphisms parameterised by a curve. As an application, we use this framework to carry out a detailed study of filtered specialisation for the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in [de 2018].
We describe a compactification by KSBA stable pairs of the five-dimensional moduli space of K3 surfaces with a purely non-symplectic automorphism of order four and $U(2)\oplus D_4^{\oplus 2}$ lattice polarization. These K3 surfaces can be realized as the minimal resolution of the double cover of $\mathbb {P}^{1}\times \mathbb {P}^{1}$ branched along a specific $(4,\,4)$ curve. We show that, up to a finite group action, this stable pairs compactification is isomorphic to Kirwan's partial desingularization of the GIT quotient $(\mathbb {P}^{1})^{8}{/\!/}\mathrm {SL}_2$ with the symmetric linearization.
We define két abelian schemes, két 1-motives and két log 1-motives and formulate duality theory for these objects. Then we show that tamely ramified strict 1-motives over a discrete valuation field can be extended uniquely to két log 1-motives over the corresponding discrete valuation ring. As an application, we present a proof to a result of Kato stated in [12, §4.3] without proof. To a tamely ramified strict 1-motive over a discrete valuation field, we associate a monodromy pairing and compare it with Raynaud’s geometric monodromy.
We prove versions of various classical results on specialisation of fundamental groups in the context of log schemes in the sense of Fontaine and Illusie, generalising earlier results of Hoshi, Lepage and Orgogozo. The key technical result relates the category of finite Kummer étale covers of an fs log scheme over a complete Noetherian local ring to the Kummer étale coverings of its reduction.
We introduce the notion of a $Y$-pattern with coefficients and its geometric counterpart: an $\mathcal {X}$-cluster variety with coefficients. We use these constructions to build a flat degeneration of every skew-symmetrizable specially completed $\mathcal {X}$-cluster variety $\widehat {\mathcal {X} }$ to the toric variety associated to its g-fan. Moreover, we show that the fibers of this family are stratified in a natural way, with strata the specially completed $\mathcal {X}$-varieties encoded by $\operatorname {Star}(\tau )$ for each cone $\tau$ of the $\mathbf {g}$-fan. These strata degenerate to the associated toric strata of the central fiber. We further show that the family is cluster dual to $\mathcal {A}_{\mathrm {prin}}$ of Gross, Hacking, Keel and Kontsevich [Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497–608], and the fibers cluster dual to $\mathcal {A} _t$. Finally, we give two applications. First, we use our construction to identify the toric degeneration of Grassmannians from Rietsch and Williams [Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168 (2019), 3437–3527] with the Gross–Hacking–Keel–Kontsevich degeneration in the case of $\operatorname {Gr}_2(\mathbb {C} ^{5})$. Next, we use it to link cluster duality to Batyrev–Borisov duality of Gorenstein toric Fanos in the context of mirror symmetry.
We present a systematic study of threefolds fibred by K3 surfaces that are mirror to sextic double planes. There are many parallels between this theory and the theory of elliptic surfaces. We show that the geometry of such threefolds is controlled by a pair of invariants, called the generalized functional and generalized homological invariants, and we derive an explicit birational model for them, which we call the Weierstrass form. We then describe how to resolve the singularities of the Weierstrass form to obtain the “minimal form”, which has mild singularities and is unique up to birational maps in codimension 2. Finally, we describe some of the geometric properties of threefolds in minimal form, including their singular fibres, canonical divisor, and Betti numbers.
We prove some numerical inequality for the Horikawa indices for Eisenbud–Harris special nonhyperelliptic fibrations of genus 4 on algebraic surfaces under the assumption that the multiplication map of the fibration is not surjective. Furthermore, we prove that the inequality is best possible by constructing the examples satisfying the equality.
We obtain a new theorem for the non-properness set $S_f$ of a non-singular polynomial mapping $f:\mathbb C^n \to \mathbb C^n$. In particular, our result shows that if f is a counterexample to the Jacobian conjecture, then $S_f\cap Z \neq \emptyset $, for every hypersurface Z dominated by $\mathbb C^{n-1}$ on which some non-singular polynomial $h: \mathbb C^{n}\to \mathbb C$ is constant. Also, we present topological approaches to the Jacobian conjecture in $\mathbb C^n$. As applications, we extend bidimensional results of Rabier, Lê and Weber to higher dimensions.