Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:12:36.516Z Has data issue: false hasContentIssue false

Extending tamely ramified strict 1-motives into két log 1-motives

Published online by Cambridge University Press:  09 March 2021

Heer Zhao*
Affiliation:
Fakultät für Mathematik, Universität Duisburg-Essen, Essen45117, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define két abelian schemes, két 1-motives and két log 1-motives and formulate duality theory for these objects. Then we show that tamely ramified strict 1-motives over a discrete valuation field can be extended uniquely to két log 1-motives over the corresponding discrete valuation ring. As an application, we present a proof to a result of Kato stated in [12, §4.3] without proof. To a tamely ramified strict 1-motive over a discrete valuation field, we associate a monodromy pairing and compare it with Raynaud’s geometric monodromy.

Type
Algebraic and Complex Geometry
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Bertapelle, A., Candilera, M. and Cristante, V., ‘Monodromy of logarithmic Barsotti-Tate groups attached to 1-motives’, J. Reine Angew. Math. 573 (2004), 211234.Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron Models, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] (Springer-Verlag,Berlin, 1990).Google Scholar
Deligne, P., ‘Théorie de Hodge. III’, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 577.CrossRefGoogle Scholar
Deligne, P., ‘Le lemme de gabber’, Astérisque 127(5) (1985), 131150.Google Scholar
Grothendieck, A., Raynaud, M. and Rim, D. S., Groupes de monodromie en géométrie algébrique. I Monodromy groups in algebraic geometry. I, Vol. 288 of Lecture Notes in Mathematics (Springer-Verlag,Berlin–New York, 1972). Séminaire de Géométrie Algébrique du Bois-Marie 19671969 (SGA 7 I).Google Scholar
Halle, L. H. and Nicaise, J., Néron Models and Base Change, Vol. 2156 of Lecture Notes in Mathematics (Springer, Cham, Switzerland, 2016).CrossRefGoogle Scholar
Illusie, L., ‘An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology. Cohomologies $p$ -adiques et applications arithmétiques, II’p-adic cohomologies and arithmetic applications. II, Astérisque 279 (2002), 271322.Google Scholar
Kajiwara, T., Kato, K. and Nakayama, C., ‘Logarithmic abelian varieties’, Nagoya Math. J. 189 (2008), 63138.CrossRefGoogle Scholar
Kajiwara, T., Kato, K. and Nakayama, C., ‘Logarithmic abelian varieties, part IV: proper models’, Nagoya Math. J. 219 (2015), 963.CrossRefGoogle Scholar
Kajiwara, T., Kato, K. and Nakayama, C., ‘Logarithmic abelian varieties, part VI: local moduli and GAGF’, Yokohama Math. J. 65 (2019), 5375.Google Scholar
Kato, K., ‘Logarithmic structures of Fontaine-Illusie. II’, Preprint, 2019, arXiv:1905.10678.CrossRefGoogle Scholar
Kato, K., Logarithmic Dieudonné Theory, Preprint, 1992.Google Scholar
Kato, K. and Trihan, F., ‘On the conjectures of Birch and Swinnerton-Dyer in characteristic $p>0$ ’, Invent. Math. 153(3) (2003), 537592.CrossRefGoogle Scholar
Madapusi Sampath, K., Log $p$ -divisible groups (D’aprés Kato) (2009). URL: https://sites.google.com/a/bc.edu/keerthi/.Google Scholar
Nizioł, W., ‘ $\!\!K$ -theory of log-schemes. I’, Doc. Math. 13 (2008), 505551.Google Scholar
Raynaud, M., ‘1-motifs et monodromie géométrique’ 1-motives and geometric monodromy, Astérisque 223 (1994), 295319.Google Scholar
The Stacks Project Authors, Stacks Project (2020). URL: http://stacks.math.columbia.edu.Google Scholar
Stix, J., ‘Projective anabelian curves in positive characteristic and descent theory for log-étale covers’, Bonner Mathematische Schriften 354 (2002).Google Scholar
Zhao, H., ‘Log abelian varieties over a log point’, Doc. Math. 22 (2017), 505550.Google Scholar