We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article explores the notions of $\mathcal {F}$-transitivity and topological $\mathcal {F}$-recurrence for backward shift operators on weighted $\ell ^p$-spaces and $c_0$-spaces on directed trees, where $\mathcal {F}$ represents a Furstenberg family of subsets of $\mathbb {N}_0$. In particular, we establish the equivalence between recurrence and hypercyclicity of these operators on unrooted directed trees. For rooted directed trees, a backward shift operator is hypercyclic if and only if it possesses an orbit of a bounded subset that is weakly dense.
In this paper we consider positional games where the winning sets are edge sets of tree-universal graphs. Specifically, we show that in the unbiased Maker-Breaker game on the edges of the complete graph $K_n$, Maker has a strategy to claim a graph which contains copies of all spanning trees with maximum degree at most $cn/\log (n)$, for a suitable constant $c$ and $n$ being large enough. We also prove an analogous result for Waiter-Client games. Both of our results show that the building player can play at least as good as suggested by the random graph intuition. Moreover, they improve on a special case of earlier results by Johannsen, Krivelevich, and Samotij as well as Han and Yang for Maker-Breaker games.
We use Stein’s method to obtain distributional approximations of subgraph counts in the uniform attachment model or random directed acyclic graph; we provide also estimates of rates of convergence. In particular, we give uni- and multi-variate Poisson approximations to the counts of cycles and normal approximations to the counts of unicyclic subgraphs; we also give a partial result for the counts of trees. We further find a class of multicyclic graphs whose subgraph counts are a.s. bounded as $n\to \infty$.
The protection number of a vertex $v$ in a tree is the length of the shortest path from $v$ to any leaf contained in the maximal subtree where $v$ is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree $1$, then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.
We define a notion of substitution on colored binary trees that we call substreetution. We show that a point fixed by a substreetution may (or not) be almost periodic, and thus the closure of the orbit under the $\mathbb {F}_{2}^{+}$-action may (or not) be minimal. We study one special example: we show that it belongs to the minimal case and that the number of preimages in the minimal set increases just exponentially fast, whereas it could be expected a super-exponential growth. We also give examples of periodic trees without invariant measures on their orbit. We use our construction to get quasi-periodic colored tilings of the hyperbolic disk.
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$-th power of their Euclidean distance, with $p\gt 0$. In the large $n$ limit with $n_R/n \to \alpha _R$ and $0\lt \alpha _R\lt 1$, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $p\lt d$, we are able to prove that the total edge costs normalized by the rate $n^{1-p/d}$ converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.
We study the local convergence of critical Galton–Watson trees under various conditionings. We give a sufficient condition, which serves to cover all previous known results, for the convergence in distribution of a conditioned Galton–Watson tree to Kesten’s tree. We also propose a new proof to give the limit in distribution of a critical Galton–Watson tree, with finite support, conditioned on having a large width.
We show that for any $\varepsilon \gt 0$ and $\Delta \in \mathbb{N}$, there exists $\alpha \gt 0$ such that for sufficiently large $n$, every $n$-vertex graph $G$ satisfying that $\delta (G)\geq \varepsilon n$ and $e(X, Y)\gt 0$ for every pair of disjoint vertex sets $X, Y\subseteq V(G)$ of size $\alpha n$ contains all spanning trees with maximum degree at most $\Delta$. This strengthens a result of Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person.
Aromatic B-series were introduced as an extension of standard Butcher-series for the study of volume-preserving integrators. It was proven with their help that the only volume-preserving B-series method is the exact flow of the differential equation. The question was raised whether there exists a volume-preserving integrator that can be expanded as an aromatic B-series. In this work, we introduce a new algebraic tool, called the aromatic bicomplex, similar to the variational bicomplex in variational calculus. We prove the exactness of this bicomplex and use it to describe explicitly the key object in the study of volume-preserving integrators: the aromatic forms of vanishing divergence. The analysis provides us with a handful of new tools to study aromatic B-series, gives insights on the process of integration by parts of trees, and allows to describe explicitly the aromatic B-series of a volume-preserving integrator. In particular, we conclude that an aromatic Runge–Kutta method cannot preserve volume.
We extend the notion of universal graphs to a geometric setting. A geometric graph is universal for a class $\mathcal H$ of planar graphs if it contains an embedding, that is, a crossing-free drawing, of every graph in $\mathcal H$. Our main result is that there exists a geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$-vertex forests; this generalises a well-known result by Chung and Graham, which states that there exists an (abstract) graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that contains every $n$-vertex forest as a subgraph. The upper bound of $O\!\left(n \log n\right)$ edges cannot be improved, even if more than $n$ vertices are allowed. We also prove that every $n$-vertex convex geometric graph that is universal for $n$-vertex outerplanar graphs has a near-quadratic number of edges, namely $\Omega _h(n^{2-1/h})$, for every positive integer $h$; this almost matches the trivial $O(n^2)$ upper bound given by the $n$-vertex complete convex geometric graph. Finally, we prove that there exists an $n$-vertex convex geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$-vertex caterpillars.
The notion of cross-intersecting set pair system of size
$m$
,
$ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$
with
$A_i\cap B_i=\emptyset$
and
$A_i\cap B_j\ne \emptyset$
, was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that
$m\le\binom{a+b}{a}$
if
$|A_i|\le a$
and
$|B_i|\le b$
for each
$i$
. Our central problem is to see how this bound changes with the additional condition
$|A_i\cap B_j|=1$
for
$i\ne j$
. Such a system is called
$1$
-cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is
at least
$5^{n/2}$
for
$n$
even,
$a=b=n$
,
equal to
$\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$
if
$a=2$
and
$b=n\ge 4$
,
at most
$|\cup _{i=1}^m A_i|$
,
asymptotically
$n^2$
if
$\{A_i\}$
is a linear hypergraph (
$|A_i\cap A_j|\le 1$
for
$i\ne j$
),
asymptotically
${1\over 2}n^2$
if
$\{A_i\}$
and
$\{B_i\}$
are both linear hypergraphs.
We show that the diameter of a uniformly drawn spanning tree of a simple connected graph on n vertices with minimal degree linear in n is typically of order
$\sqrt{n}$
. A byproduct of our proof, which is of independent interest, is that on such graphs the Cheeger constant and the spectral gap are comparable.
We study two models of an age-biased graph process: the
$\delta$
-version of the preferential attachment graph model (PAM) and the uniform attachment graph model (UAM), with m attachments for each of the incoming vertices. We show that almost surely the scaled size of a breadth-first (descendant) tree rooted at a fixed vertex converges, for
$m=1$
, to a limit whose distribution is a mixture of two beta distributions and a single beta distribution respectively, and that for
$m>1$
the limit is 1. We also analyze the likely performance of two greedy (online) algorithms, for a large matching set and a large independent set, and determine – for each model and each greedy algorithm – both a limiting fraction of vertices involved and an almost sure convergence rate.
We introduce a notion of finite sampling consistency for phylogenetic trees and show that the set of finitely sampling-consistent and exchangeable distributions on n-leaf phylogenetic trees is a polytope. We use this polytope to show that the set of all exchangeable and sampling-consistent distributions on four-leaf phylogenetic trees is exactly Aldous’ beta-splitting model, and give a description of some of the vertices for the polytope of distributions on five leaves. We also introduce a new semialgebraic set of exchangeable and sampling consistent models we call the multinomial model and use it to characterize the set of exchangeable and sampling-consistent distributions. Using this new model, we obtain a finite de Finetti-type theorem for rooted binary trees in the style of Diaconis’ theorem on finite exchangeable sequences.
In this work we analyse bucket increasing tree families. We introduce two simple stochastic growth processes, generating random bucket increasing trees of size n, complementing the earlier result of Mahmoud and Smythe (1995, Theoret. Comput. Sci.144 221–249.) for bucket recursive trees. On the combinatorial side, we define multilabelled generalisations of the tree families d-ary increasing trees and generalised plane-oriented recursive trees. Additionally, we introduce a clustering process for ordinary increasing trees and relate it to bucket increasing trees. We discuss in detail the bucket size two and present a bijection between such bucket increasing tree families and certain families of graphs called increasing diamonds, providing an explanation for phenomena observed by Bodini et al. (2016, Lect. Notes Comput. Sci.9644 207–219.). Concerning structural properties of bucket increasing trees, we analyse the tree parameter
$K_n$
. It counts the initial bucket size of the node containing label n in a tree of size n and is closely related to the distribution of node types. Additionally, we analyse the parameters descendants of label j and degree of the bucket containing label j, providing distributional decompositions, complementing and extending earlier results (Kuba and Panholzer (2010), Theoret. Comput. Sci.411(34–36) 3255–3273.).
It is well known that the height profile of a critical conditioned Galton–Watson tree with finite offspring variance converges, after a suitable normalisation, to the local time of a standard Brownian excursion. In this work, we study the distance profile, defined as the profile of all distances between pairs of vertices. We show that after a proper rescaling the distance profile converges to a continuous random function that can be described as the density of distances between random points in the Brownian continuum random tree. We show that this limiting function a.s. is Hölder continuous of any order
$\alpha<1$
, and that it is a.e. differentiable. We note that it cannot be differentiable at 0, but leave as open questions whether it is Lipschitz, and whether it is continuously differentiable on the half-line
$(0,\infty)$
. The distance profile is naturally defined also for unrooted trees contrary to the height profile that is designed for rooted trees. This is used in our proof, and we prove the corresponding convergence result for the distance profile of random unrooted simply generated trees. As a minor purpose of the present work, we also formalize the notion of unrooted simply generated trees and include some simple results relating them to rooted simply generated trees, which might be of independent interest.
We present infinite analogues of our splinter lemma for constructing nested sets of separations. From these we derive several tree-of-tangles-type theorems for infinite graphs and infinite abstract separation systems.
What is the maximum number of copies of a fixed forest T in an n-vertex graph in a graph class
$\mathcal {G}$
as
$n\to \infty $
? We answer this question for a variety of sparse graph classes
$\mathcal {G}$
. In particular, we show that the answer is
$\Theta (n^{\alpha _{d}(T)})$
where
$\alpha _{d}(T)$
is the size of the largest stable set in the subforest of T induced by the vertices of degree at most d, for some integer d that depends on
$\mathcal {G}$
. For example, when
$\mathcal {G}$
is the class of k-degenerate graphs then
$d=k$
; when
$\mathcal {G}$
is the class of graphs containing no
$K_{s,t}$
-minor (
$t\geqslant s$
) then
$d=s-1$
; and when
$\mathcal {G}$
is the class of k-planar graphs then
$d=2$
. All these results are in fact consequences of a single lemma in terms of a finite set of excluded subgraphs.
We explore the tree limits recently defined by Elek and Tardos. In particular, we find tree limits for many classes of random trees. We give general theorems for three classes of conditional Galton–Watson trees and simply generated trees, for split trees and generalized split trees (as defined here), and for trees defined by a continuous-time branching process. These general results include, for example, random labelled trees, ordered trees, random recursive trees, preferential attachment trees, and binary search trees.
We prove the Erdős–Sós conjecture for trees with bounded maximum degree and large dense host graphs. As a corollary, we obtain an upper bound on the multicolour Ramsey number of large trees whose maximum degree is bounded by a constant.