To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
V510 Pup (IRAS 08005-2356) is a binary post-AGB system with a fast molecular outflow that has been noted for its puzzling mixture of carbon- and oxygen-rich features in the optical and infrared. To explore this chemical dichotomy and relate it to the kinematics of the source, we present an ACA spectral line survey detailing fourteen newly detected molecules in this pre-planetary nebula. The simultaneous presence of CN/C2H/HC3N and SO/SO2 support the previous conclusion of mixed chemistry, and their line profiles indicate that the C- and O-rich material trace distinct velocity structures in the outflow. This evidence suggests that V510 Pup could harbor a dense O-rich central waist from an earlier stage of evolution, which persisted after a fast C-rich molecular outflow formed. By studying the gas phase composition of this unique source, we aim to reveal new insights into the interplay between dynamics and chemistry in rapidly evolving post-AGB systems.
Even after decades of usage as an extragalactic standard candle, the universal bright end of the planetary nebula luminosity function (PNLF) still lacks a solid theoretical explanation. Until now, models have modeled planetary nebulae (PNe) from artificial stellar populations, without an underlying cosmological star formation history. We present PICS (PNe In Cosmological Simulations), a novel method of modeling PNe in cosmological simulations, through which PN populations for the first time naturally occur within galaxies of diverse evolutionary pathways. We find that only by using realistic stellar populations and their metallicities is it possible to reproduce the bright end of the PNLF for all galaxy types. In particular, the dependence of stellar lifetimes on metallicity has to be accounted for to produce bright PNe in metal-rich populations. Finally, PICS reproduces the statistically complete part of the PNLF observed around the Sun, down to six orders of magnitude below the bright end.
The modelling of the evolutionary phases beyond the asymptotic giant branch attracts the interest of the astrophysical community because it allows the determination of the properties of progenitor stars and to deduce the efficiency of the mechanisms able to alter the surface chemistry of the stars evolving through the asymptotic giant branch. This has been possible since improvements in the modelling of these phases, which allow a reliable determination of the luminosity with which stars evolve after the termination the asymptotic giant branch evolution.
The surface chemistry of post-asymptotic giant branch stars and planetary nebulae is shown to be tightly correlated to the various processes taking place during the asymptotic giant branch evolution. The possibility of using the observed infrared excess of these evolved stars to derive information on the dust formation process during the previous evolutionary phases is also discussed.
Since the mid 70ies it is known that the dwarf galaxies around the Milky Way are arranged in a thin, polar structure. The arrangement and motion within this structure has been identified as a severe challenge to the standard model of cosmology, dubbed as the plane of satellites problem. More observational evidence for such structures has been put forward around other galaxies, such as the Andromeda galaxy, Cen A or NGC 253, among others, adding to the previously identified tensions. Solutions to the plane of satellite problem should therefore not only be tailored to the Milky Way, but need to explain all these different observed systems and environments.
Photon-driven flows have been studied for almost a century, and a quantitative description of the radiative forces on atoms and ions is important for understanding a wide variety of systems, including active galactic nuclei (AGN). The colloquially-termed “radiation pressure” of line-driven winds plays an important role in driving outflows in these environments. Quantifying the associated forces is crucial to understanding how these flows enable interactive mechanisms within these environments, such as AGN feedback. Here we provide new calculations of the dimensionless line strength parameter due to radiation driving. For representative AGN, we calculate the photoionization balance at each step along the line of sight (LOS) to the proposed wind-launching region above the accretion disk. We then use a recently compiled database of approximately 5.6 million spectral lines to compute the strength of the line-driving force on the gas and the mass-loss rates resulting from these outflows. We also introduce a “shielding factor’’ that increases the magnitude of the accretion disk column density prior to the launch radius. This shielding factor simulates a proposed inner “failed wind” region that is thought to shield the outflowing gas from becoming over-ionized by the central source. We also revisit and formalize the role of the commonly-used ionization parameter in setting the properties of the accelerating gas.
We present the spatially resolved star formation history (SFH) of a shell-like structure located in the northeastern Small Magellanic Cloud (SMC). We quantitatively obtain the SFH using unprecedented deep photometric data (g ∼ 24 magnitude) from the SMASH survey and colour-magnitude diagram (CMD) fitting techniques. We consider, for the first time, the SMC’s line-of-sight depth and its optical effects on the CMDs. The SFH presents higher accuracy when a line-of-sight depth of ∼ 3 kpc is simulated.
We find young star formation enhancements at ∼150 Myr, ∼200 Myr, ∼450 Myr, ∼650 Myr, and ∼1 Gyr. Comparing the structure’s SFH with the Large Magellanic Cloud’s northern arm SFH we show strong evidence of synchronicity from at least the past ∼2.8 Gyr, possibly ∼3.5 Gyr. Our results place constraints on the orbital history of the Magellanic Clouds which, potentially, have implications on their dynamical mass estimates.
We present literature on abundance determinations in planetary nebulae (PN) as well as public tools that can be used to derive them. Concerning direct methods to derive abundances we discuss in some depth such issues as reddening correction, use of proper densities and temperatures to compute the abundances, correction for unseen ionic stages, effect of stellar absorption on nebular spectra, and error analysis. Concerning photoionization model-fitting, we discuss the necessary ingredients of model stellar atmospheres, the problem of incomplete slit covering and the determination of the goodness of fit. A note on the use of IFU observations is given. The still unsolved problem of temperature fluctuations is briefly presented, with references to more detailed papers. The problem of abundance discrepancies is touched upon with reference to more extensive discussions in the present volume. Finally carbon footprint issues are mentioned in the context of extensive PN modeling and large databases.
Ongoing improvements of sub-mm- and mm-range interferometers and single-dish radiotelescopes are progressively allowing the detailed study of planetary nebulae (PNe) in molecular species other than 12CO and 13CO. We are implementing a new set of tables for extending the capabilities of the morpho-kinematical modelling tool SHAPE+shapemol, so radiative transfer in molecular species beyond 12CO and 13CO, namely C17O, C18O, HCN, HNC, CS, SiO, HCO+, and N2H+, are enabled under the Large Velocity Gradient approximation with the ease of use of SHAPE. We present preliminary results on the simultaneous analysis of a plethora of IRAM-30m and HERSCHEL/HIFI spectra, and NOEMA maps of different species in the pre-PN nebula M 1-92, which show interesting features such as a previously undetected pair of polar, turbulent, high-temperature blobs, or a 17O/18O isotopic ratio of 1.7, which indicates the AGB should have turned C-rich, as opposed to the apparent nature of its O-rich nebula.
To investigate the impact of interaction in the North-Eastern Small Magellanic Cloud (SMC) shell region, we used far-UV images from eleven observed fields obtained from the Ultra Violet Imaging Telescope. Cleaned, science-ready images were created and point spread function photometry was performed to extract photometric data. The detected FUV stars were cross-matched with the Gaia EDR3 data to select SMC stars and to obtain kinematic information. The findings from the analysis of the FUV-optical CMDs suggest a history of episodic star formation with most of the stars with age > 150 Myr, along with stars as young as 7 Myr. The spatial distribution of FUV stars shows a gradient decreasing radially outwards. We plan to perform a detailed analysis of the morphology, density, and kinematics of the young stars in this region.
Compact obscured nuclei (CONs) are relatively common in the centers of local (U)LIRGs, yet their nature remains unknown. Both AGN activity and extreme nuclear starbursts have been suggested as plausible nuclear power sources. The prevalence of outflows in these systems suggest that CONs represent a key phase in the nuclear feedback cycle, in which material is ejected from the central regions of the galaxy. Here, we present results from MUSE for the confirmed local CON galaxy NGC4418. For the first time we spatially map the spectral features and kinematics of the galaxy in the optical, revealing several previously unknown structures. In particular, we discover a bilateral outflow along the minor axis, an outflowing bubble, several knot structures and a receding outflow partially obscured by the galactic disk. Based on the properties of these features, we conclude that the CON in NGC4418 is most likely powered by an AGN.
Active regions (ARs) appear in the solar atmosphere as a consequence of the emergence of magnetic flux ropes (FRs). Due to the presence of twist, the photospheric line-of-sight (LOS) magnetograms of emerging ARs show an elongation of the polarities known as magnetic tongues. These tongues can affect the estimation of tilt angles during their emergence phase. In this work, we propose a Bayesian method to model LOS magnetograms of emerging ARs using a half-torus twisted FR model. We apply this model to 21 emerging ARs observed during Solar Cycle 23. We find that the Bayesian method corrects the tilt when compared to other methods, removing the spurious rotation of the polarities produced by the retraction of the tongues during the emergence. We find a variation in Joy’s law with the stage of the AR emergence and the method used for its estimation.
Our understanding of solar convection is incomplete. A crucial gap is the unknown superadiabaticity in the solar convection zone, δ = ▽–▽ad. Global modes of oscillations in the inertial frequency range are sensitive to δ and serve as a novel tool to explore solar convection. Here, we address the forward problem where the superadiabaticity δ(r) varies with radius. We solve the 2.5D eigenvalue problem, considering the linearized equations for momentum, mass and energy conservation with respect to a realistic solar model. We find that the frequency and eigenfunction of the m = 1 high-latitude mode are influenced by δ in the lower convection zone. Our prescribed setup suggests that the superadiabaticity in the lower half of the convection zone is below 2.4×10-7 to reach a qualitative agreement with the observed eigenfunction.
Flares on the Sun are often associated with ejected plasma: these events are known as coronal mass ejections (CMEs). These events, although are studied in detail on the Sun, have only a few dozen known examples on other stars, mainly detected using the Doppler-shifted absorption/emission features in Balmer lines and tedious manual analysis. We present a possibility to find stellar CMEs with the help of high-resolution solar spectra.
We study disks and jets in various accretion states (SANE and MAD) using novel, GPU-accelerated general-relativistic magneto-hydrodynamic (GR-MHD) code which we developed, based on HARM. This code, written in CUDA-c and uses OpenMP to parallelize multi-GPU setups, allows high resolution simulations of accretion disks and the formation and structure of jets without the need of multi-node supercomputer infrastructure. A 2563 simulation is well within the reach of an Nvidia DGX-V100 server, with the computation being a factor about 100 times faster if only the CPU was used.
We use this code to examine several disk structures, wind and jet properties in the MAD and SANE states. In the MAD state, we find that the magnetic flux threading the horizon mostly depends on the spin of the BH. This implies that the jet structure and power are strong functions of the spin, with non-spinning BHs have the widest jets.
Low-lying loops in the quiet Sun are a reliable source of energy for atmospheric heating, but the mechanisms by which they evolve are somewhat enigmatic. To address the origins of atmospheric heating events in the quiet Sun, we utilize our stratified, convection-driven, 3D MHD simulation Bifrost to explore the evolution and eventual major reconnection between several magnetic features; one of which is a magnetic flux rope. We zoom in on the buildup of the magnetic flux rope, which self-orders in the corona via an inverse cascade of helicity. We also discover that the flux rope attempts to relax to a linear force-free field according to Taylor’s theory, but cannot do so completely. Finally, we demonstrate that the eventual nanoflare-scale reconnection event could potentially be observed in the 171 Å channels of SDO/AIA and the future MUSE mission. We also determine that the spectral resolution of MUSE is sensitive enough to capture the kinematics of the bi-directional plasma jets emanating from the reconnection region.
Recent observations have established that dwarf galaxies can host black holes of intermediate mass (IMBH, 100Mȯ < MIMBH ≲ 105 Mȯ). With modern numerical models, we can test the growth of IMBHs as well as their evolutionary impact on the host galaxy. Our novel subsolar-mass (0.8 solar mass) resolution simulations of dwarf galaxies (M* = 2 × 107 Mȯ) have a resolved three-phase interstellar medium and account for non-equilibrium heating, cooling, and chemistry processes. The stellar initial mass function is fully sampled between 0.08–150 Mȯ while massive stars can form HII regions and explode as resolved supernovae. The stellar dynamics around the IMBH is integrated accurately with a regularization scheme. We present a viscous accretion disk model for the IMBH with momentum, energy, and mass conserving wind feedback. We demonstrate how the IMBH can grow from accretion of the cold and warm gas phase and how the presence of the IMBH and its feedback impacts the gas phase structure.
We summarize the main results from the survey of Planetary Nebulae (PNe) in M 31 with Megacam@CFHT and subsequent spectroscopy with Hectospec@MMT. We identified ∼5000 PNe in M 31 (∼1200 with spectroscopy; ∼200 with chemical abundances). We find a PN Luminosity Function faint-end rise, linked to a percentage of older stars in the parent population. We utilize PN extinction to distinguish young and old PNe. We find that the [Ar/H] vs [O/Ar] plane for emission-line nebulae is analogous to the [Fe/H] vs [α/Fe] plane for stars, and exploration of the M 31 disc PNe in this plane allowed us to constrain its chemical enrichment history. We find the kinematically and chemically distinct thin and thick discs of M 31, and that the G1-clump substructure is formed from perturbed disc material. We infer that M 31 has had a wet major (mass-ratio∼1:5) merger ∼2.5-4 Gyr ago, and obtain important constraints on the cannibalized satellite properties.
Solar-type stars, including the Sun, have magnetic fields that extend from their interiors to the surface and beyond, influencing both the stellar activity and interplanetary medium. Magnetic activity phenomena, such as coronal mass ejections (CMEs), significantly impacts space weather. These CMEs, composed of plasma clouds with magnetic fields ejected from the stellar corona, pose a potential threat to planets by affecting their magnetosphere and atmosphere. Despite advancements in detecting stellar CMEs, detection remains limited. We focus on understanding CME propagation by analyzing key parameters like position, velocities, and the configuration of stellar magnetic fields. Using spot transit mapping, we reconstruct magnetograms for Kepler-63 and Kepler-411, employing the ForeCAT model to simulate CME trajectories from these stars. Results indicate that CME deflections generally decrease with radial velocity and increase with ejection latitude. Additionally, stars with stronger magnetic fields, such as Kepler-63, tend to cause more significant CME deflections.
We investigated a scenario where the presence of a broad absorption line (BAL) feature in quasars (QSOs) is contingent upon the line of sight being situated within an outflow cone emanating from the source. We examined the mechanism of dust-driven winds based on the failed radiatively accelerated dusty outflow (FRADO) model proposed by Czerny & Hryniewicz, letting it be responsible for the formation of massive outflow. We calculated the probability of observing the BAL effect from the geometry of outflow which is a function of global parameters of black hole mass (M•), Eddington ratio (αEdd), and metallicity (Z). We then compared the results with prevalence of BAL QSOs in a sample of observational data from SDSS. The consistency of our model with the data supports the interpretation of the BAL phenomenon as a result of source orientation, rather than a transitory stage in AGN evolution.
The Sun’s global inertial modes are very sensitive to the solar differential rotation and to properties of the deep solar convection zone which are currently poorly constrained. These properties include the superadiabatic temperature gradient, the latitudinal entropy gradient, and the turbulent viscosity. The inertial modes also play a key role in controlling the Sun’s large-scale structure and dynamics, in particular the solar differential rotation. This paper summarizes recent observations and advances in the (linear and nonlinear) modeling of the solar inertial modes.