Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:06:13.330Z Has data issue: false hasContentIssue false

Probing the superadiabaticity of the solar convection zone with inertial modes

Published online by Cambridge University Press:  23 December 2024

Prithwitosh Dey*
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Yuto Bekki
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Laurent Gizon
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany Institut für Astrophysik, Georg–August-Universität Göttingen, 37077 Göttingen, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our understanding of solar convection is incomplete. A crucial gap is the unknown superadiabaticity in the solar convection zone, δ = ▽–▽ad. Global modes of oscillations in the inertial frequency range are sensitive to δ and serve as a novel tool to explore solar convection. Here, we address the forward problem where the superadiabaticity δ(r) varies with radius. We solve the 2.5D eigenvalue problem, considering the linearized equations for momentum, mass and energy conservation with respect to a realistic solar model. We find that the frequency and eigenfunction of the m = 1 high-latitude mode are influenced by δ in the lower convection zone. Our prescribed setup suggests that the superadiabaticity in the lower half of the convection zone is below 2.4×10-7 to reach a qualitative agreement with the observed eigenfunction.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bekki, Y. 2024, Numerical study of non-toroidal inertial modes with l = m + 1 radial vorticity in the Sun’s convection zone. Astron. Astrophys., 682, A39.CrossRefGoogle Scholar
Bekki, Y., Cameron, R. H., & Gizon, L. 2022, Theory of solar oscillations in the inertial frequency range: Linear modes of the convection zone. Astron. Astrophys., 662, A16.CrossRefGoogle Scholar
Bogart, Richard S. and Baldner, Charles S. and Basu, Sarbani 2015, Evolution of Near-surface Flows Inferred from High-resolution Ring-diagram Analysis. Astrophys. J., 807, 125.CrossRefGoogle Scholar
Böhm-Vitense, E. 1958, Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Zeitschrift Astrophys., 46, 108.Google Scholar
Brandenburg, A. 2016, Stellar Mixing Length Theory with Entropy Rain. Astrophys. J., 832, 6.CrossRefGoogle Scholar
Christensen–Dalsgaard, J., Dappen, W., Ajukov, S. V., Anderson, E. R., Antia, H. M., Basu, S., Baturin, V. A., Berthomieu, G., Chaboyer, B., Chitre, S. M., Cox, A. N., Demarque, P., Donatowicz, J., Dziembowski, W. A., Gabriel, M., Gough, D. O., Guenther, D. B., Guzik, J. A., Harvey, J. W., Hill, F., Houdek, G., Iglesias, C. A., Kosovichev, A. G., Leibacher, J. W., Morel, P., Proffitt, C. R., Provost, J., Reiter, J., Rhodes, E. J. Jr., Rogers, F. J., Roxburgh, I. W., Thompson, M. J., & Ulrich, R. K. 1996, The Current State of Solar Modeling. Science, 272, 12861292.CrossRefGoogle ScholarPubMed
Cossette, J.-F. & Rast, M. P. 2016, Supergranulation as the Largest Buoyantly Driven Convective Scale of the Sun. Astrophys. J., 829, L17.CrossRefGoogle Scholar
Gizon, L., Cameron, R. H., Bekki, Y., Birch, A. C., Bogart, R. S., Sacha Brun, A., Damiani, C., Fournier, D., Hyest, L., Jain, K., Lekshmi, B., Liang, Z.-C., & Proxauf, B. 2021, Solar inertial modes: Observations, identification, and diagnostic promise. Astron. Astrophys., 652, L6.CrossRefGoogle Scholar
Hanasoge, S. M., Duvall, T. L., & Sreenivasan, K. R. 2012, Anomalously weak solar convection. PNAS, 109, 1192811932.CrossRefGoogle ScholarPubMed
Hanson, C. S., Hanasoge, S., & Sreenivasan, K. R. 2022, Discovery of high-frequency retrograde vorticity waves in the Sun. Nat. Astron., 6, 708714.CrossRefGoogle Scholar
Hotta, H., Bekki, Y., Gizon, L., Noraz, Q., & Rast, M. 2023, Dynamics of Large-Scale Solar Flows. Space Sci. Rev., 219, 77.CrossRefGoogle ScholarPubMed
Hotta, H., Kusano, K., & Shimada, R. 2022, Generation of Solar-like Differential Rotation. Astrophys. J., 933, 199.CrossRefGoogle Scholar
Käpylä, P. J. 2023, Convective scale and subadiabatic layers in simulations of rotating compressible convection. Preprint, https://arxiv.org/abs/2310.12855.Google Scholar
Larson, T. P. & Schou, J. 2018, Global-Mode Analysis of Full-Disk Data from the Michelson Doppler Imager and the Helioseismic and Magnetic Imager. Sol. Phys., 293, 29.CrossRefGoogle ScholarPubMed
Liang, Z.-C., Gizon, L., Birch, A. C., & Duvall, T. L. Jr 2019, Time-distance helioseismology of solar Rossby waves. Astron. Astrophys., 626, A3.CrossRefGoogle Scholar
Löptien, B., Gizon, L., Birch, A. C., Schou, J., Proxauf, B., Duvall, T. L., Bogart, R. S., & Christensen, U. R. 2018, Global-scale equatorial Rossby waves as an essential component of solar internal dynamics. Nat. Astron., 2, 568573.CrossRefGoogle Scholar
Mandal, K. & Hanasoge, S. 2020, Properties of Solar Rossby Waves from Normal Mode Coupling and Characterizing Its Systematics. Astrophys. J., 891, 125.CrossRefGoogle Scholar
O’Mara, B., Miesch, M. S., Featherstone, N. A., & Augustson, K. C. 2016, Velocity amplitudes in global convection simulations: The role of the Prandtl number and near-surface driving. Adv. Space Res., 58, 14751489.CrossRefGoogle Scholar
Proxauf, B., Gizon, L., Löptien, B., Schou, J., Birch, A. C., & Bogart, R. S. 2020, Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis. Astron. Astrophys., 634, A44.CrossRefGoogle Scholar