Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T00:50:35.788Z Has data issue: false hasContentIssue false

Intermediate mass black hole feedback in dwarf galaxy simulations with a resolved ISM and accurate nuclear stellar dynamics

Published online by Cambridge University Press:  28 October 2024

Christian Partmann*
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany
Thorsten Naab
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany
Natalia Lahén
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany
Eugene Churazov
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany
Jessica M. Hislop
Affiliation:
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki, Finland
Antti Rantala
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany
Peter H. Johansson
Affiliation:
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki, Finland
Michaela Hirschmann
Affiliation:
Institute for Physics, Laboratory for galaxy evolution, Ecole Polytechnique Federale de Lausanne, Observatoire de Sauverny, Chemin Pegasi 51, 1290 Versoix, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations have established that dwarf galaxies can host black holes of intermediate mass (IMBH, 100Mȯ < MIMBH ≲ 105 Mȯ). With modern numerical models, we can test the growth of IMBHs as well as their evolutionary impact on the host galaxy. Our novel subsolar-mass (0.8 solar mass) resolution simulations of dwarf galaxies (M* = 2 × 107 Mȯ) have a resolved three-phase interstellar medium and account for non-equilibrium heating, cooling, and chemistry processes. The stellar initial mass function is fully sampled between 0.08–150 Mȯ while massive stars can form HII regions and explode as resolved supernovae. The stellar dynamics around the IMBH is integrated accurately with a regularization scheme. We present a viscous accretion disk model for the IMBH with momentum, energy, and mass conserving wind feedback. We demonstrate how the IMBH can grow from accretion of the cold and warm gas phase and how the presence of the IMBH and its feedback impacts the gas phase structure.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Birchall, K. L., Watson, M. G., & Aird, J. 2020 MNRAS, 492, 2268 CrossRefGoogle Scholar
Greene, J. E., Strader, J., & Ho, L. C. 2020 ARAA, 58, 257 CrossRefGoogle Scholar
Hu, C.-Y., Naab, T., Walch, S., Moster, B. P., & Oser, L. 2014 MNRAS, 443, 1173 CrossRefGoogle Scholar
Hu, C.-Y., Naab, T., Walch, S., Glover, S. C. O., & Clark, P. C. 2016 MNRAS, 458, 3528 CrossRefGoogle Scholar
Hu, C.-Y., Naab, T., Glover, S. C. O., Walch, S., & Clark, P. C. 2017 MNRAS, 471, 2151 CrossRefGoogle Scholar
Koudmani, S., Sijacki, D., & Smith, M. C. 2022 MNRAS, 516, 2112 CrossRefGoogle Scholar
Lahén, N., Naab, T., Kauffmann, G., Szecsi, D., Hislop, J. M., et al. 2023 MNRAS, 522, 3092 CrossRefGoogle Scholar
Mezcua, M., & Sánchez, H. D. 2020 ApJ, 898, L30 CrossRefGoogle Scholar
Mezcua, M., Siudek, M., Suh, H., Valiante, R., Spinoso, D., & Bonoli, S. 2023 ApJ, 943, L5 CrossRefGoogle Scholar
Ostriker, J. P., Choi, E., Ciotti, L., Novak, G. S., & Proga, D. 2010 ApJ, 722, 642 CrossRefGoogle Scholar
Partmann, C., Naab, T., Lahén, N., Churazov, E., Hislop, J., Rantala, A., et al. in prep Google Scholar
Rantala, A., Pihajoki, P., Johansson, P. H., Naab, T., Lahén, N., & Sawala, T. 2017 ApJ, 840, 53 CrossRefGoogle Scholar
Schutte, Z., & Reines, A. E. 2022 Nature, 516, 2112 Google Scholar
Sharma, R. S., Brooks, A. M., Somerville, R. S., Tremmel, M., et al. 2020 ApJ, 897, 103 CrossRefGoogle Scholar
Silk, J., 2017 ApJ, 839, L13CrossRefGoogle Scholar
Springel, V. 2005 MNRAS, 364, 1105CrossRefGoogle Scholar
Steinwandel, U. P., Moster, B. P., Naab, T., Hu, C.-Y., & Walch, S. 2020 MNRAS, 495, 1035 CrossRefGoogle Scholar
Zaw, I., Rosenthal, M. J., Katkov, I. Y., Gelfand, J. D., Chen, Y.-P., et al. 2023 ApJ, 897, 111 CrossRefGoogle Scholar