To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main purpose of this paper is to investigate the curvature behavior of four-dimensional shrinking gradient Ricci solitons. For such a soliton $M$ with bounded scalar curvature $S$, it is shown that the curvature operator $\text{Rm}$ of $M$ satisfies the estimate $|\text{Rm}|\leqslant cS$ for some constant $c$. Moreover, the curvature operator $\text{Rm}$ is asymptotically nonnegative at infinity and admits a lower bound $\text{Rm}\geqslant -c(\ln (r+1))^{-1/4}$, where $r$ is the distance function to a fixed point in $M$. As an application, we prove that if the scalar curvature converges to zero at infinity, then the soliton must be asymptotically conical. As a separate issue, a diameter upper bound for compact shrinking gradient Ricci solitons of arbitrary dimension is derived in terms of the injectivity radius.
The aim of the present paper is the classification of real hypersurfaces M equipped with the condition Al = lA, l = R(., ξ)ξ, restricted in a subspace of the tangent space TpM of M at a point p. This class is large and difficult to classify, therefore a second condition is imposed: (∇ξl)X = ω(X)ξ + ψ(X)lX, where ω(X), ψ(X) are 1-forms. The last condition is studied for the first time and is much weaker than ∇ξl = 0 which has been studied so far. The Jacobi Structure Operator satisfying this weaker condition can be called generalized ξ-parallel Jacobi Structure Operator.
In the paper we describe Kahler QCH surfaces. We prove that any Calabi type and orthotoric Kahler surfaces are QCH Kahler surfaces. We also classify locally homogeneous QCH surfaces.
It is known that hypersurfaces in ${\mathbb C}$Pn or ${\mathbb C}$Hn for which the number g of distinct principal curvatures satisfies g ≤ 2, must belong to a standard list of Hopf hypersurfaces with constant principal curvatures, provided that n ≥ 3. In this paper, we construct a two-parameter family of non-Hopf hypersurfaces in ${\mathbb C}$P2 and ${\mathbb C}$H2 with g=2 and show that every non-Hopf hypersurface with g=2 is locally of this form.
For an odd-dimensional oriented hyperbolic manifold with cusps and strongly acyclic coefficient systems, we define the Reidemeister torsion of the Borel–Serre compactification of the manifold using bases of cohomology classes defined via Eisenstein series by the method of Harder. In the main result of this paper we relate this combinatorial torsion to the regularized analytic torsion. Together with results on the asymptotic behaviour of the regularized analytic torsion, established previously, this should have applications to study the growth of torsion in the cohomology of arithmetic groups. Our main result is established via a gluing formula, and here our approach is heavily inspired by a recent paper of Lesch.
We prove ${\it\epsilon}$-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is ${\it\delta}$-small compared to the mean curvature. We give the explicit dependence of ${\it\delta}$ on ${\it\epsilon}$ within the class of uniformly convex hypersurfaces with bounded volume.
We introduce polar metrics on a product manifold, which have product and warped product metrics as special cases. We prove a de Rham-type theorem characterizing Riemannian manifolds that can be locally or globally decomposed as a product manifold endowed with a polar metric. For such a product manifold, our main result gives a complete description of all its isometric immersions into a space form whose second fundamental forms are adapted to its product structure in the sense that the tangent spaces to each factor are preserved by all shape operators. This is a far-reaching generalization of a basic decomposition theorem for isometric immersions of Riemannian products due to Moore as well as of its extension by Nölker to isometric immersions of warped products.
It is known that the minimal 3-spheres of CR type with constant sectional curvature have been classified explicitly, and also that the weakly Lagrangian case has been studied. In this paper, we provide some examples of minimal 3-spheres with constant curvature in the complex projective space, which are neither of CR type nor weakly Lagrangian, and give the adapted frame of a minimal 3-sphere of CR type with constant sectional curvature.
In this paper we determine the metric dimension of $n$-dimensional metric $(X,G)$-manifolds. This category includes all Euclidean, hyperbolic and spherical manifolds as special cases.
In this paper, we first deduce a formula of S-curvature of homogeneous Finsler spaces in terms of Killing vector fields. Then we prove that a homogeneous Finsler space has isotropic S-curvature if and only if it has vanishing S-curvature. In the special case that the homogeneous Finsler space is a Randers space, we give an explicit formula which coincides with the previous formula obtained by the second author using other methods.
The following Chen's bi-harmonic conjecture made in 1991 is well-known and stays open: The only bi-harmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we prove that the bi-harmonic conjecture is true for bi-harmonic hypersurfaces with three distinct principal curvatures of a Euclidean space of arbitrary dimension.
We consider quasi-Einstein metrics in the framework of contact metric manifolds and prove some rigidity results. First, we show that any quasi-Einstein Sasakian metric is Einstein. Next, we prove that any complete K-contact manifold with quasi-Einstein metric is compact Einstein and Sasakian. To this end, we extend these results for (κ, μ)-spaces.
Given the pair (P, η) of (0,2) tensors, where η defines a volume element, we consider a new variational problem varying η only. We then have Einstein metrics and slant immersions as critical points of the 1st variation. We may characterize Ricci flat metrics and Lagrangian submanifolds as stable critical points of our variational problem.
We apply appropriate maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. By supposing a suitable restriction on the norm of the traceless part of the second fundamental form, we show that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder, when its scalar curvature is positive, or to a spherical cylinder, when its scalar curvature is negative. Related to the compact case, we also establish a rigidity result.
In this paper we give explicit formulas for differential characteristic classes of principal $G$-bundles with connections and prove their expected properties. In particular, we obtain explicit formulas for differential Chern classes, differential Pontryagin classes and the differential Euler class. Furthermore, we show that the differential Chern class is the unique natural transformation from (Simons–Sullivan) differential $K$-theory to (Cheeger–Simons) differential characters that is compatible with curvature and characteristic class. We also give the explicit formula for the differential Chern class on Freed–Lott differential $K$-theory. Finally, we discuss the odd differential Chern classes.
In this paper we consider the stationary Poisson Boolean model with spherical grains and propose a family of nonparametric estimators for the radius distribution. These estimators are based on observed distances and radii, weighted in an appropriate way. They are ratio unbiased and asymptotically consistent for a growing observation window. We show that the asymptotic variance exists and is given by a fairly explicit integral expression. Asymptotic normality is established under a suitable integrability assumption on the weight function. We also provide a short discussion of related estimators as well as a simulation study.
The random triangles discussed in this paper are defined by having the directions of their sides independent and uniformly distributed on (0, π). To fix the scale, one side chosen arbitrarily is assigned unit length; let a and b denote the lengths of the other sides. We find the density functions of a / b, max{a, b}, min{a, b}, and of the area of the triangle, the first three explicitly and the last as an elliptic integral. The first two density functions, with supports in (0, ∞) and (½, ∞), respectively, are unusual in having an infinite spike at 1 which is interior to their ranges (the triangle is then isosceles).
We study the absolute continuity of the convolution ${\it\delta}_{e^{X}}^{\natural }\star {\it\delta}_{e^{Y}}^{\natural }$ of two orbital measures on the symmetric spaces $\mathbf{SO}_{0}(p,p)/\mathbf{SO}(p)\times \mathbf{SO}(p)$, $\mathbf{SU}(p,p)/\mathbf{S}(\mathbf{U}(p)\times \mathbf{U}(p))$ and $\mathbf{Sp}(p,p)/\mathbf{Sp}(p)\times \mathbf{Sp}(p)$. We prove sharp conditions on $X$, $Y\in \mathfrak{a}$ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions.
In this paper we obtain a sharp height estimate concerning compact hypersurfaces immersed into warped product spaces with some constant higher-order mean curvature and whose boundary is contained in a slice. We apply these results to draw topological conclusions at the end of the paper.