To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor’s proof of the local Langlands correspondence for $\mathrm {GL_n}$ and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms $\mathrm {Mant}_{b, \mu }$ of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ a supercuspidal representation. In this paper, we give a conjectural formula for $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ an admissible representation and prove it when $\rho $ is essentially square-integrable. Our proof works for general $\rho $ conditionally on a conjecture appearing in Shin’s work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.
Let $\mathcal {A} \rightarrow S$ be an abelian scheme over an irreducible variety over $\mathbb {C}$ of relative dimension $g$. For any simply-connected subset $\Delta$ of $S^{\mathrm {an}}$ one can define the Betti map from $\mathcal {A}_{\Delta }$ to $\mathbb {T}^{2g}$, the real torus of dimension $2g$, by identifying each closed fiber of $\mathcal {A}_{\Delta } \rightarrow \Delta$ with $\mathbb {T}^{2g}$ via the Betti homology. Computing the generic rank of the Betti map restricted to a subvariety $X$ of $\mathcal {A}$ is useful to study Diophantine problems, e.g. proving the geometric Bogomolov conjecture over char $0$ and studying the relative Manin–Mumford conjecture. In this paper we give a geometric criterion to detect this rank. As an application we show that it is maximal after taking a large fibered power (if $X$ satisfies some conditions); it is an important step to prove the bound for the number of rational points on curves (Dimitrov et al., Uniformity in Mordell–Lang for Curves, Preprint (2020), arXiv:2001.10276). Another application is to answer a question of André, Corvaja and Zannier and improve a result of Voisin. We also systematically study its link with the relative Manin–Mumford conjecture, reducing the latter to a simpler conjecture. Our tools are functional transcendence and unlikely intersections for mixed Shimura varieties.
Let k be an algebraically closed field of positive characteristic. For any integer $m\ge 2$, we show that the Hodge numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.
In this paper we prove the mixed Ax–Schanuel theorem for the universal abelian varieties (more generally any mixed Shimura variety of Kuga type), and give some simple applications. In particular, we present an application for studying the generic rank of the Betti map.
We provide a direct proof of a Bogomolov-type statement for affine varieties V defined over function fields K of finite transcendence degree over an arbitrary field k, generalising a previous result (obtained through a different approach) of the first author in the special case when K is a function field of transcendence degree $1$. Furthermore, we obtain sharp lower bounds for the Weil height of the points in $V(\overline {K})$, which are not contained in the largest subvariety $W\subseteq V$ defined over the constant field $\overline {k}$.
Rapoport–Zink spaces are deformation spaces for $p$-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let ${{\mathscr M}}_{\infty }$ be an infinite-level Rapoport–Zink space of EL type, and let ${{\mathscr M}}_{\infty }^{\circ }$ be one connected component of its geometric fiber. We show that ${{\mathscr M}}_{\infty }^{\circ }$ contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of $p$-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve $X(p^{\infty })^{\circ }$ is exactly the locus of elliptic curves $E$ with supersingular reduction, such that the formal group of $E$ has no extra endomorphisms.
We define variants of PEL type of the Shimura varieties that appear in the context of the arithmetic Gan–Gross–Prasad (AGGP) conjecture. We formulate for them a version of the AGGP conjecture. We also construct (global and semi-global) integral models of these Shimura varieties and formulate for them conjectures on arithmetic intersection numbers. We prove some of these conjectures in low dimension.
In this short paper, we combine the representability theorem introduced in [Porta and Yu, Representability theorem in derived analytic geometry, preprint, 2017, arXiv:1704.01683; Porta and Yu, Derived Hom spaces in rigid analytic geometry, preprint, 2018, arXiv:1801.07730] with the theory of derived formal models introduced in [António, $p$-adic derived formal geometry and derived Raynaud localization theorem, preprint, 2018, arXiv:1805.03302] to prove the existence representability of the derived Hilbert space $\mathbf{R}\text{Hilb}(X)$ for a separated $k$-analytic space $X$. Such representability results rely on a localization theorem stating that if $\mathfrak{X}$ is a quasi-compact and quasi-separated formal scheme, then the $\infty$-category $\text{Coh}^{-}(\mathfrak{X}^{\text{rig}})$ of almost perfect complexes over the generic fiber can be realized as a Verdier quotient of the $\infty$-category $\text{Coh}^{-}(\mathfrak{X})$. Along the way, we prove several results concerning the $\infty$-categories of formal models for almost perfect modules on derived $k$-analytic spaces.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of $\mathbb {Z}_{S}$-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod $\ell $ representations of the absolute Galois group of L, we prove that the same holds also for the $\mathcal {O}_{L,S}$-points.
Let f and g be two cuspidal modular forms and let ${\mathcal {F}}$ be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space $\mathcal {W}$. Using ideas of Pottharst, under certain hypotheses on f and $g,$ we construct a coherent sheaf over $V \times \mathcal {W}$ that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function $L_p$ interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of $L_p$.
We study intersections of orbits in polynomial semigroup dynamics with lines on the affine plane over a number field, extending previous work of D. Ghioca, T. Tucker, and M. Zieve (2008).
We formulate a general question regarding the size of the iterated Galois groups associated with an algebraic dynamical system and then we discuss some special cases of our question. Our main result answers this question for certain split polynomial maps whose coordinates are unicritical polynomials.
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as defined by B. Levin. Our result covers the (modified) local models attached to all connected reductive groups over $p$-adic local fields with $p\geqslant 5$. In addition, we give a self-contained study of relative affine Grassmannians and loop groups formed using general relative effective Cartier divisors in a relative curve over an arbitrary Noetherian affine scheme.
The bounded height conjecture of Bombieri, Masser, and Zannier states that for any sufficiently generic algebraic subvariety of a semiabelian $\overline{\mathbb{Q}}$-variety $G$ there is an upper bound on the Weil height of the points contained in its intersection with the union of all algebraic subgroups having (at most) complementary dimension in $G$. This conjecture has been shown by Habegger in the case where $G$ is either a multiplicative torus or an abelian variety. However, there are new obstructions to his approach if $G$ is a general semiabelian variety. In particular, the lack of Poincaré reducibility means that quotients of a given semiabelian variety are intricate to describe. To overcome this, we study directly certain families of line bundles on $G$. This allows us to demonstrate the conjecture for general semiabelian varieties.
Using the axioms of He and Rapoport for the stratifications of Shimura varieties, we explain a result of Görtz, He, and Nie that the EKOR strata contained in the basic loci can be described as a disjoint union of Deligne–Lusztig varieties. In the special case of Siegel modular varieties, we compare their descriptions to that of Görtz and Yu for the supersingular Kottwitz-Rapoport strata and to the descriptions of Harashita and Hoeve for the supersingular Ekedahl–Oort strata.
Let K be a complete discrete valuation field of characteristic $0$, with not necessarily perfect residue field of characteristic $p>0$. We define a Faltings extension of $\mathcal {O}_K$ over $\mathbb {Z}_p$, and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.
We show that the set of natural numbers has an exponential diophantine definition in the rationals. It follows that the corresponding decision problem is undecidable.
We show that the compactly supported cohomology of certain $\text{U}(n,n)$- or $\text{Sp}(2n)$-Shimura varieties with $\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$-level vanishes above the middle degree. The only assumption is that we work over a CM field $F$ in which the prime $p$ splits completely. We also give an application to Galois representations for torsion in the cohomology of the locally symmetric spaces for $\text{GL}_{n}/F$. More precisely, we use the vanishing result for Shimura varieties to eliminate the nilpotent ideal in the construction of these Galois representations. This strengthens recent results of Scholze [On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), 945–1066; MR 3418533] and Newton–Thorne [Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma 4 (2016), e21; MR 3528275].
The sequence of prime numbers p for which a variety over ℚ has no p-adic point plays a fundamental role in arithmetic geometry. This sequence is deterministic, however, we prove that if we choose a typical variety from a family then the sequence has random behaviour. We furthermore prove that this behaviour is modelled by a random walk in Brownian motion. This has several consequences, one of them being the description of the finer properties of the distribution of the primes in this sequence via the Feynman–Kac formula.
Let $G$ be a connected split reductive group over a finite field $\mathbb{F}_{q}$ and $X$ a smooth projective geometrically connected curve over $\mathbb{F}_{q}$. The $\ell$-adic cohomology of stacks of $G$-shtukas is a generalization of the space of automorphic forms with compact support over the function field of $X$. In this paper, we construct a constant term morphism on the cohomology of stacks of shtukas which is a generalization of the constant term morphism for automorphic forms. We also define the cuspidal cohomology which generalizes the space of cuspidal automorphic forms. Then we show that the cuspidal cohomology has finite dimension and that it is equal to the (rationally) Hecke-finite cohomology defined by V. Lafforgue.