We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $r$ be any positive integer. We prove that for every sufficiently large $k$ there exists a $k$-chromatic vertex-critical graph $G$ such that $\chi (G-R)=k$ for every set $R \subseteq E(G)$ with $|R|\le r$. This partially solves a problem posed by Erdős in 1985, who asked whether the above statement holds for $k \ge 4$.
Let G and H be two vertex disjoint graphs. The join$G+H$ is the graph with $V(G+H)=V(G)+V(H)$ and $E(G+H)=E(G)\cup E(H)\cup \{xy\;|\; x\in V(G), y\in V(H)\}$. A (finite) linear forest is a graph consisting of (finite) vertex disjoint paths. We prove that for any finite linear forest F and any nonnull graph H, if $\{F, H\}$-free graphs have a $\chi $-binding function $f(\omega )$, then $\{F, K_n+H\}$-free graphs have a $\chi $-binding function $kf(\omega )$ for some constant k.
Given a graph $H$, let us denote by $f_\chi (H)$ and $f_\ell (H)$, respectively, the maximum chromatic number and the maximum list chromatic number of $H$-minor-free graphs. Hadwiger’s famous colouring conjecture from 1943 states that $f_\chi (K_t)=t-1$ for every $t \ge 2$. A closely related problem that has received significant attention in the past concerns $f_\ell (K_t)$, for which it is known that $2t-o(t) \le f_\ell (K_t) \le O(t (\!\log \log t)^6)$. Thus, $f_\ell (K_t)$ is bounded away from the conjectured value $t-1$ for $f_\chi (K_t)$ by at least a constant factor. The so-called $H$-Hadwiger’s conjecture, proposed by Seymour, asks to prove that $f_\chi (H)={\textrm{v}}(H)-1$ for a given graph $H$ (which would be implied by Hadwiger’s conjecture).
In this paper, we prove several new lower bounds on $f_\ell (H)$, thus exploring the limits of a list colouring extension of $H$-Hadwiger’s conjecture. Our main results are:
For every $\varepsilon \gt 0$ and all sufficiently large graphs $H$ we have $f_\ell (H)\ge (1-\varepsilon )({\textrm{v}}(H)+\kappa (H))$, where $\kappa (H)$ denotes the vertex-connectivity of $H$.
For every $\varepsilon \gt 0$ there exists $C=C(\varepsilon )\gt 0$ such that asymptotically almost every $n$-vertex graph $H$ with $\left \lceil C n\log n\right \rceil$ edges satisfies $f_\ell (H)\ge (2-\varepsilon )n$.
The first result generalizes recent results on complete and complete bipartite graphs and shows that the list chromatic number of $H$-minor-free graphs is separated from the desired value of $({\textrm{v}}(H)-1)$ by a constant factor for all large graphs $H$ of linear connectivity. The second result tells us that for almost all graphs $H$ with superlogarithmic average degree $f_\ell (H)$ is separated from $({\textrm{v}}(H)-1)$ by a constant factor arbitrarily close to $2$. Conceptually these results indicate that the graphs $H$ for which $f_\ell (H)$ is close to the conjectured value $({\textrm{v}}(H)-1)$ for $f_\chi (H)$ are typically rather sparse.
In this chapter, we look first at the diameter of random graphs, i.e., the extreme value of the shortest distance between a pair of vertices. Then we look at the size of the largest independent set and the related value of the chromatic number. One interesting feature of these parameters is that they are often highly concentrated.
For a graph G and a family of graphs $\mathcal {F}$, the Turán number ${\mathrm {ex}}(G,\mathcal {F})$ is the maximum number of edges an $\mathcal {F}$-free subgraph of G can have. We prove that ${\mathrm {ex}}(G,\mathcal {F})\ge {\mathrm {ex}}(K_r, \mathcal {F})$ if the chromatic number of G is r and $\mathcal {F}$ is a family of connected graphs. This result answers a question raised by Briggs and Cox [‘Inverting the Turán problem’, Discrete Math.342(7) (2019), 1865–1884] about the inverse Turán number for all connected graphs.
The diamond is the complete graph on four vertices minus one edge; $P_n$ and $C_n$ denote the path and cycle on n vertices, respectively. We prove that the chromatic number of a $(P_6,C_4,\mbox {diamond})$-free graph G is no larger than the maximum of 3 and the clique number of G.
The
$\chi $
-stability index
$\mathrm {es}_{\chi }(G)$
of a graph G is the minimum number of its edges whose removal results in a graph with chromatic number smaller than that of G. We consider three open problems from Akbari et al. [‘Nordhaus–Gaddum and other bounds for the chromatic edge-stability number’, European J. Combin.84 (2020), Article no. 103042]. We show by examples that a known characterisation of k-regular (
$k\le 5$
) graphs G with
$\mathrm {es}_{\chi }(G) = 1$
does not extend to
$k\ge 6$
, and we characterise graphs G with
$\chi (G)=3$
for which
$\mathrm { es}_{\chi }(G)+\mathrm {es}_{\chi }(\overline {G}) = 2$
. We derive necessary conditions on graphs G which attain a known upper bound on
$\mathrm { es}_{\chi }(G)$
in terms of the order and the chromatic number of G and show that the conditions are sufficient when
$n\equiv 2 \pmod 3$
and
$\chi (G)=3$
.
In this chapter, we describe the sporadic rank 3 graphs, and further interesting strongly regular graphs that have special properties not shared by the other graphs in the infinite families to which they belong. Part of the information given here was obtained using the computer algebra system GAP and its package GRAPE(with Nauty). Among the listed properties one finds (various) constructions, a discussion of the maximal cliques and cocliques, a table with regular sets arising from a group action,local characterizations, sporadic properties such as connections with Ramsey numbers, chromatic number, p-ranks, decompositions, etc. The chapter has exactly 100 sections, mostly each dealing with an individual graph, but often also discussing a small family of graphs with equally many vertices (ranging from 5 to 531441 vertices). It contains some new geometric and/or combinatorial constructions of a few sporadic (exceptional and extraspecial) rank 3 graphs.
It is well known that for any integers k and g, there is a graph with chromatic number at least k and girth at least g. In 1960s, Erdös and Hajnal conjectured that for any k and g, there exists a number h(k,g), such that every graph with chromatic number at least h(k,g) contains a subgraph with chromatic number at least k and girth at least g. In 1977, Rödl proved the case when
$g=4$
, for arbitrary k. We prove the fractional chromatic number version of Rödl’s result.
We explore a general method based on trees of elementary submodels in order to present highly simplified proofs to numerous results in infinite combinatorics. While countable elementary submodels have been employed in such settings already, we significantly broaden this framework by developing the corresponding technique for countably closed models of size continuum. The applications range from various theorems on paradoxical decompositions of the plane, to coloring sparse set systems, results on graph chromatic number and constructions from point-set topology. Our main purpose is to demonstrate the ease and wide applicability of this method in a form accessible to anyone with a basic background in set theory and logic.
In 1968, Galvin conjectured that an uncountable poset $P$ is the union of countably many chains if and only if this is true for every subposet $Q\,\subseteq \,P$ with size ${{\aleph }_{1}}$. In 1981, Rado formulated a similar conjecture that an uncountable interval graph $G$ is countably chromatic if and only if this is true for every induced subgraph $H\,\subseteq \,G$ with size ${{\aleph }_{1}}$. Todorčević has shown that Rado's conjecture is consistent relative to the existence of a supercompact cardinal, while the consistency of Galvin's conjecture remains open. In this paper, we survey and collect a variety of results related to these two conjectures. We also show that the extension of Rado's conjecture to the class of all chordal graphs is relatively consistent with the existence of a supercompact cardinal.
Let $R$ be a ring and $Z(R)$ be the set of all zero-divisors of $R$. The total graph of $R$, denoted by $T(\Gamma (R))$ is a graph with all elements of $R$ as vertices, and two distinct vertices $x, y\in R$ are adjacent if and only if $x+ y\in Z(R)$. Let the regular graph of $R$, $\mathrm{Reg} (\Gamma (R))$, be the induced subgraph of $T(\Gamma (R))$ on the regular elements of $R$. In 2008, Anderson and Badawi proved that the girth of the total graph and the regular graph of a commutative ring are contained in the set $\{ 3, 4, \infty \} $. In this paper, we extend this result to an arbitrary ring (not necessarily commutative). We also prove that if $R$ is a reduced left Noetherian ring and $2\not\in Z(R)$, then the chromatic number and the clique number of $\mathrm{Reg} (\Gamma (R))$ are the same and they are ${2}^{r} $, where $r$ is the number of minimal prime ideals of $R$. Among other results, we show that if $R$ is a semiprime left Noetherian ring and $\mathrm{Reg} (R)$ is finite, then $R$ is finite.
We prove consistent, assuming there is a supercompact cardinal, that there is a singular strong limit cardinal μ, of cofinality ω, such that every μ+-chromatic graph X on μ+ has an edge colouring c of X into μ colours for which every vertex colouring g of X into at most μ many colours has a g-colour class on which c takes every value.
The paper also contains some generalisations of the above statement in which μ+ is replaced by other cardinals > μ.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.