Networks surround us, from social networks to protein–protein interaction networks within the cells of our bodies. The theory of random graphs provides a necessary framework for understanding their structure and development. This text provides an accessible introduction to this rapidly expanding subject. It covers all the basic features of random graphs – component structure, matchings and Hamilton cycles, connectivity and chromatic number – before discussing models of real-world networks, including intersection graphs, preferential attachment graphs and small-world models. Based on the authors' own teaching experience, it can be used as a textbook for a one-semester course on random graphs and networks at advanced undergraduate or graduate level. The text includes numerous exercises, with a particular focus on developing students' skills in asymptotic analysis. More challenging problems are accompanied by hints or suggestions for further reading.
‘Random Graphs and Networks: A First Course’ is a wonderful textbook that covers a remarkable set of topics written by two leading experts in the field. The textbook is comprehensive and contains a wealth of theoretical preliminaries, exercises and problems, making it ideal for an introductory course or for self-study. It is the best starting point in the present textbook market for any university student interested in the foundations of network science.’
Charalampos E. Tsourakakis - Boston University
'This is a very concise, highly informative introduction to the theory of random graphs and networks ... Essential.'
M. Bona Source: Choice
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.