from Part II - Erdős–Rényi–Gilbert Model
Published online by Cambridge University Press: 02 March 2023
In this chapter, we see how many random edges are required to have a particular fixed size subgraph w.h.p. In addition, we will consider the distribution of the number of copies of strictly balanced subgraphs. From these general results, one can deduce thresholds for small trees, stars, cliques, bipartite cliques, and many other small subgraphs which play an important role in the analysis of the properties not only of classic random graphs but also in the interpretation of characteristic features of real-world networks. Computing the frequency of small subgraphs is a fundamental problem in network analysis, used across diverse domains: bioinformatics, social sciences, and infrastructure networks studies.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.