We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
REFERENCES
[1]
Baumgartner, J. E., Canonical partition relations, this Journal, 40 (1975), pp. 541–554.Google Scholar
[2]
Bochnak, J., Coste, M., and Roy, M.-F., Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998.Google Scholar
[3]
Basu, S., Pollack, R., and Roy, M.-F., Algorithms in Real Algebraic Geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006.Google Scholar
[4]
Ceder, J., Finite subsets and countable decompositions of Euclidean spaces. Revue Roumaine de Mathématiques Pures et Appliquées, vol. 14 (1969), pp. 1247–1251.Google Scholar
[5]
Davies, R. O., Partitioning the plane into denumberably many sets without repeated distances. Proceedings of the Cambridge Philosophical Society, vol. 72 (1972), pp. 179–183.Google Scholar
[6]
Erdős, P. and Komjáth, P., Countable decompositions of R2 and R3. Discrete & Computational Geometry, vol. 5 (1990), pp. 325–331.CrossRefGoogle Scholar
[7]
Fox, J., An infinite color analogue of Rado’s theorem. Journal of Combinatorial Theory, Series A, vol. 114 (2007), pp. 1456–1469.Google Scholar
[8]
Komjáth, P., Tetrahedron free decomposition of R3. Bulletin of the London Mathematical Society, vol. 23 (1991), pp. 116–120.Google Scholar
[9]
Kunen, K., Partitioning Euclidean space. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 102 (1987), pp. 379–383.CrossRefGoogle Scholar
[10]
Schmerl, J. H., Partitioning Euclidean space. Discrete & Computational Geometry, vol. 10 (1993), pp. 101–106.Google Scholar
[11]
Schmerl, J. H., Triangle-free partitions of Euclidean space. Bulletin of the London Mathematical Society, vol. 26 (1994), pp. 483–486.Google Scholar
[12]
Schmerl, J. H., Countable partitions of Euclidean space. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 120 (1996), pp. 7–12.Google Scholar
[13]
Schmerl, J. H., Avoidable algebraic subsets of Euclidean space. Transactions of the American Mathematical Society, vol. 352 (2000), pp. 2479–2489.Google Scholar
[14]
Schmerl, J. H., Chromatic numbers of algebraic hypergraphs. Combinatorica (2016), pp. 1–16.Google Scholar
[15]
van den Dries, L, Algebraic theories with definable Skolem functions, this Journal, vol. 49 (1984), pp. 625–629.Google Scholar