We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\overline {M}(a,c,n)$ denote the number of overpartitions of n with first residual crank congruent to a modulo c with $c\geq 3$ being odd and $0\leq a<c$. The central objective of this paper is twofold: firstly, to establish an asymptotic formula for the crank of overpartitions; and secondly, to establish several inequalities concerning $\overline {M}(a,c,n)$ that encompasses crank differences, positivity, and strict log-subadditivity.
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62–83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthén’s maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When data are balanced, MUML is equivalent to the maximum likelihood procedure. Simulation results in the literature endorse the MUML procedure also for unbalanced data. This paper studies the analytical properties of the MUML procedure in general. The results indicate that the MUML procedure leads to correct model inference asymptotically when level-2 sample size goes to infinity and the coefficient of variation of the level-1 sample sizes goes to zero. The study clearly identifies the impact of level-1 and level-2 sample sizes on the standard errors and test statistic of the MUML procedure. Analytical results explain previous simulation results and will guide the design or data collection for the future applications of MUML.
Since data in social and behavioral sciences are often hierarchically organized, special statistical procedures for covariance structure models have been developed to reflect such hierarchical structures. Most of these developments are based on a multivariate normality distribution assumption, which may not be realistic for practical data. It is of interest to know whether normal theory-based inference can still be valid with violations of the distribution condition. Various interesting results have been obtained for conventional covariance structure analysis based on the class of elliptical distributions. This paper shows that similar results still hold for 2-level covariance structure models. Specifically, when both the level-1 (within cluster) and level-2 (between cluster) random components follow the same elliptical distribution, the rescaled statistic recently developed by Yuan and Bentler asymptotically follows a chi-square distribution. When level-1 and level-2 have different elliptical distributions, an additional rescaled statistic can be constructed that also asymptotically follows a chi-square distribution. Our results provide a rationale for applying these rescaled statistics to general non-normal distributions, and also provide insight into issues related to level-1 and level-2 sample sizes.
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample standardized regression coefficients are also biased in general, although it should not be a concern in practice when the sample size is not too small. Monte Carlo results imply that, for both standardized and unstandardized sample regression coefficients, SE estimates based on asymptotics tend to under-predict the empirical ones at smaller sample sizes.
In a recent article Jennrich and Satorra (Psychometrika 78: 545–552, 2013) showed that a proof by Browne (British Journal of Mathematical and Statistical Psychology 37: 62–83, 1984) of the asymptotic distribution of a goodness of fit test statistic is incomplete because it fails to prove that the orthogonal component function employed is continuous. Jennrich and Satorra (Psychometrika 78: 545–552, 2013) showed how Browne’s proof can be completed satisfactorily but this required the development of an extensive and mathematically sophisticated framework for continuous orthogonal component functions. This short note provides a simple proof of the asymptotic distribution of Browne’s (British Journal of Mathematical and Statistical Psychology 37: 62–83, 1984) test statistic by using an equivalent form of the statistic that does not involve orthogonal component functions and consequently avoids all complicating issues associated with them.
Person fit statistics are frequently used to detect aberrant behavior when assuming an item response model generated the data. A common statistic, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document}, has been shown in previous studies to perform well under a myriad of conditions. However, it is well-known that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document} does not follow a standard normal distribution when using an estimated latent trait. As a result, corrections of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document}, called \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z^*$$\end{document}, have been proposed in the literature for specific item response models. We propose a more general correction that is applicable to many types of data, namely survey or tests with multiple item types and underlying latent constructs, which subsumes previous work done by others. In addition, we provide corrections for multiple estimators of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta $$\end{document}, the latent trait, including MLE, MAP and WLE. We provide analytical derivations that justifies our proposed correction, as well as simulation studies to examine the performance of the proposed correction with finite test lengths. An applied example is also provided to demonstrate proof of concept. We conclude with recommendations for practitioners when the asymptotic correction works well under different conditions and also future directions.
We provide explicit small-time formulae for the at-the-money implied volatility, skew, and curvature in a large class of models, including rough volatility models and their multi-factor versions. Our general setup encompasses both European options on a stock and VIX options, thereby providing new insights on their joint calibration. The tools used are essentially based on Malliavin calculus for Gaussian processes. We develop a detailed theoretical and numerical analysis of the two-factor rough Bergomi model and provide insights on the interplay between the different parameters for joint SPX–VIX smile calibration.
In this paper, we explore the applications of Tail Variance (TV) as a measure of tail riskiness and the confidence level of using Tail Conditional Expectation (TCE)-based risk capital. While TCE measures the expected loss of a risk that exceeds a certain threshold, TV measures the variability of risk along its tails. We first derive analytical formulas of TV and TCE for a large variety of probability distributions. These formulas are useful instruments for relevant research works on tail risk measures. We then propose a distribution-free approach utilizing TV to estimate the lower bounds of the confidence level of using TCE-based risk capital. In doing so, we introduce sharpened conditional probability inequalities, which halve the bounds of conventional Markov and Cantelli inequalities. Such an approach is easy to implement. We further investigate the characterization of tail risks by TV through an exploration of TV’s asymptotics. A distribution-free limit formula is derived for the asymptotics of TV. To further investigate the asymptotic properties, we consider two broad distribution families defined on tails, namely, the polynomial-tailed distributions and the exponential-tailed distributions. The two distribution families are found to exhibit an asymptotic equivalence between TV and the reciprocal square of the hazard rate. We also establish asymptotic relationships between TCE and VaR for the two families. Our asymptotic analysis contributes to the existing research by unifying the asymptotic expressions and the convergence rate of TV for Student-t distributions, exponential distributions, and normal distributions, which complements the discussion on the convergence rate of univariate cases in [28]. To show the usefulness of our results, we present two case studies based on real data from the industry. We first show how to use conditional inequalities to assess the confidence of using TCE-based risk capital for different types of insurance businesses. Then, for financial data, we provide alternative evidence for the relationship between the data frequency and the tail categorization by the asymptotics of TV.
Multivariate regular variation is a key concept that has been applied in finance, insurance, and risk management. This paper proposes a new dependence assumption via a framework of multivariate regular variation. Under the condition that financial and insurance risks satisfy our assumption, we conduct asymptotic analyses for multidimensional ruin probabilities in the discrete-time and continuous-time cases. Also, we present a two-dimensional numerical example satisfying our assumption, through which we show the accuracy of the asymptotic result for the discrete-time multidimensional insurance risk model.
We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential $V$, (ii) Fisher–Hartwig singularities and (iii) a smooth function in the background. The potential $V$ is associated with an equilibrium measure that is assumed to be supported on the whole unit circle. For constant potentials $V$, the equilibrium measure is the uniform measure on the unit circle and our formulas reduce to well-known results for Toeplitz determinants with Fisher–Hartwig singularities. For non-constant $V$, our results appear to be new even in the case of no Fisher–Hartwig singularities. As applications of our results, we derive various statistical properties of a determinantal point process which generalizes the circular unitary ensemble.
We consider three different families of Vafa–Witten invariants of $K3$ surfaces. In each case, the partition function that encodes the Vafa–Witten invariants is given by combinations of twisted Dedekind η-functions. By utilizing known properties of these η-functions, we obtain exact formulae for each of the invariants and prove that they asymptotically satisfy all higher-order Turán inequalities.
Before reading and studying the results on random graphs included in the text one should become familiar with the basic rules of asymptotic computation, find leading terms in combinatorial expressions, choose suitable bounds for the binomials, as well as get acquainted with probabilistic tools needed to study tail bounds, i.e., the probability that a random variable exceeds (or is smaller than) some real value. This chapter offers the reader a short description of these important technical tools used throughout the text.
We study two models of an age-biased graph process: the
$\delta$
-version of the preferential attachment graph model (PAM) and the uniform attachment graph model (UAM), with m attachments for each of the incoming vertices. We show that almost surely the scaled size of a breadth-first (descendant) tree rooted at a fixed vertex converges, for
$m=1$
, to a limit whose distribution is a mixture of two beta distributions and a single beta distribution respectively, and that for
$m>1$
the limit is 1. We also analyze the likely performance of two greedy (online) algorithms, for a large matching set and a large independent set, and determine – for each model and each greedy algorithm – both a limiting fraction of vertices involved and an almost sure convergence rate.
A general overview of the book is detailed after a brief description of the main algorithm to compute and exploit Christoffel-Darboux from raw moment data.
We prove and generalise a conjecture in [MPP4] about the asymptotics of
$\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$
, where
$f^{\lambda/\mu}$
is the number of standard Young tableaux of skew shape
$\lambda/\mu$
which have stable limit shape under the
$1/\sqrt{n}$
scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.
Systemic risk (SR) is considered as the risk of collapse of an entire system, which has played a significant role in explaining the recent financial turmoils from the insurance and financial industries. We consider the asymptotic behavior of the SR for portfolio losses in the model allowing for heavy-tailed primary losses, which are equipped with a wide type of dependence structure. This risk model provides an ideal framework for addressing both heavy-tailedness and dependence. As some extensions, several simulation experiments are conducted, where an insurance application of the asymptotic characterization to the determination and approximation of related SR capital has been proposed, based on the SR measure.
We study the long-term behaviour of a random walker embedded in a growing sequence of graphs. We define a (generally non-Markovian) real-valued stochastic process, called the knowledge process, that represents the ratio between the number of vertices already visited by the walker and the current size of the graph. We mainly focus on the case where the underlying graph sequence is the growing sequence of complete graphs.
This paper describes how asymptotic analysis can be used to gain new insights into the theory of cloaking of spherical and cylindrical targets within the context of acoustic waves in a class of linear elastic materials. In certain cases, these configurations allow solutions to be written down in terms of eigenfunction expansions from which high-frequency asymptotics can be extracted systematically. These asymptotics are compared with the predictions of ray theory and are used to describe the scattering that occurs when perfect cloaking models are regularised.