The Christoffel–Darboux kernel, a central object in approximation theory, is shown to have many potential uses in modern data analysis, including applications in machine learning. This is the first book to offer a rapid introduction to the subject, illustrating the surprising effectiveness of a simple tool. Bridging the gap between classical mathematics and current evolving research, the authors present the topic in detail and follow a heuristic, example-based approach, assuming only a basic background in functional analysis, probability and some elementary notions of algebraic geometry. They cover new results in both pure and applied mathematics and introduce techniques that have a wide range of potential impacts on modern quantitative and qualitative science. Comprehensive notes provide historical background, discuss advanced concepts and give detailed bibliographical references. Researchers and graduate students in mathematics, statistics, engineering or economics will find new perspectives on traditional themes, along with challenging open problems.
'This exciting book shows the potential of Christoffel-Darboux (CD) kernels in the context of data analysis … this book allows one to construct new bridges between approximation theory, operator theory, statistics and data science as well as stressing the links between people interested in such scientific domains.'
Francisco Marcellan Source: MathSciNet
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.