We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss representations of product systems (of $W^*$-correspondences) over the semigroup $\mathbb{Z}^n_+$ and show that, under certain pureness and Szegö positivity conditions, a completely contractive representation can be dilated to an isometric representation. For $n=1,2$ this is known to hold in general (without assuming the conditions), but for $n\geq 3$, it does not hold in general (as is known for the special case of isometric dilations of a tuple of commuting contractions). Restricting to the case of tuples of commuting contractions, our result reduces to a result of Barik, Das, Haria, and Sarkar (Isometric dilations and von Neumann inequality for a class of tuples in the polydisc. Trans. Amer. Math. Soc. 372 (2019), 1429–1450). Our dilation is explicitly constructed, and we present some applications.
Given a Fell bundle $\mathscr C\overset {q}{\to }\Xi $ over the discrete groupoid $\Xi $, we study the symmetry of the associated Hahn algebra $\ell ^{\infty ,1}(\Xi \!\mid \!\mathscr C)$ in terms of the isotropy subgroups of $\Xi $. We prove that $\Xi $ is symmetric (respectively hypersymmetric) if and only if all of the isotropy subgroups are symmetric (respectively hypersymmetric). We also characterise hypersymmetry using Fell bundles with constant fibres, showing that for discrete groupoids, ‘hypersymmetry’ equals ‘rigid symmetry’.
Since their inception in the 1930s by von Neumann, operator algebras have been used to shed light on many mathematical theories. Classification results for self-adjoint and non-self-adjoint operator algebras manifest this approach, but a clear connection between the two has been sought since their emergence in the late 1960s. We connect these seemingly separate types of results by uncovering a hierarchy of classification for non-self-adjoint operator algebras and $C^{*}$-algebras with additional $C^{*}$-algebraic structure. Our approach naturally applies to algebras arising from $C^{*}$-correspondences to resolve self-adjoint and non-self-adjoint isomorphism problems in the literature. We apply our strategy to completely elucidate this newly found hierarchy for operator algebras arising from directed graphs.
Let $n$ be a positive integer. A $C^{\ast }$-algebra is said to be $n$-subhomogeneous if all its irreducible representations have dimension at most $n$. We give various approximation properties characterising $n$-subhomogeneous $C^{\ast }$-algebras.
We consider a linear operator pencil with complex parameter mapping one Hilbert space onto another. It is known that the resolvent is analytic in an open annular region of the complex plane centred at the origin if and only if the coefficients of the Laurent series satisfy a doubly-infinite set of left and right fundamental equations and are suitably bounded. If the resolvent has an isolated singularity at the origin we propose a recursive orthogonal decomposition of the domain and range spaces that enables us to construct the key nonorthogonal projections that separate the singular and regular components of the resolvent and subsequently allows us to find a formula for the basic solution to the fundamental equations. We show that each Laurent series coefficient in the singular part of the resolvent can be approximated by a weakly convergent sequence of finite-dimensional matrix operators and we show how our analysis can be extended to find a global expression for the resolvent of a linear pencil in the case where the resolvent has only a finite number of isolated singularities.
In this paper we introduce a new way of deforming convolution algebras and Fourier algebras on locally compact groups. We demonstrate that this new deformation allows us to reveal some information about the underlying groups by examining Banach algebra properties of deformed algebras. More precisely, we focus on representability as an operator algebra of deformed convolution algebras on compact connected Lie groups with connection to the real dimension of the underlying group. Similarly, we investigate complete representability as an operator algebra of deformed Fourier algebras on some finitely generated discrete groups with connection to the growth rate of the group.
We continue the investigation of the isomorphism problem for multiplier algebras of reproducing kernel Hilbert spaces with the complete Nevanlinna-Pick property. In contrast to previous work in this area, we do not study these spaces by identifying them with the restrictions of a universal space, namely the Drury-Arveson space. Instead, we work directly with the Hilbert spaces and their reproducing kernels. In particular, we show that two multiplier algebras of Nevanlinna-Pick spaces on the same set are equal if and only if the Hilbert spaces are equal. Most of the article is devoted to the study of a special class of complete Nevanlinna-Pick spaces on homogeneous varieties. We provide a complete answer to the question of when two multiplier algebras of spaces of this type are algebraically or isometrically isomorphic.This generalizes results of Davidson, Ramsey,Shalit, and the author.
Let G be a finitely generated group with polynomial growth, and let ω be a weight, i.e. a sub-multiplicative function on G with positive values. We study when the weighted group algebra ℓ1 (G, ω) is isomorphic to an operator algebra. We show that ℓ1 (G, ω) is isomorphic to an operator algebra if ω is a polynomial weight with large enough degree or an exponential weight of order 0 < α < 1. We demonstrate that the order of growth of G plays an important role in this problem. Moreover, the algebraic centre of ℓ1 (G, ω) is isomorphic to a Q-algebra, and hence satisfies a multi-variable von Neumann inequality. We also present a more detailed study of our results when G consists of the d-dimensional integers ℤd or the three-dimensional discrete Heisenberg group ℍ3(ℤ). The case of the free group with two generators is considered as a counter-example of groups with exponential growth.
It has been a long-standing question whether every amenable operator algebra is isomorphic to a (necessarily nuclear) $\mathrm{C}^*$-algebra. In this note, we give a nonseparable counterexample. Finding out whether a separable counterexample exists remains an open problem. We also initiate a general study of unitarizability of representations of amenable groups in $\mathrm{C}^*$-algebras and show that our method cannot produce a separable counterexample.
In this paper we generalise a result of Izuchi and Suárez (K. Izuchi and D. Suárez, Norm-closed invariant subspaces in L∞ and H∞, Glasgow Math. J. 46 (2004), 399–404) on the shift invariant subspaces of $L^\infty(\mathbb{T})$ to the non-commutative setting. Considering these subspaces as $C(\mathbb{T})$-modules contained in $L^\infty(\mathbb{T})$, we show that under some restrictions, a similar description can be given for the ${\mathfrak{B}}$-submodules of ${\mathfrak{A}}$, where ${\mathfrak{A}}$ is a C*-algebra and ${\mathfrak{B}}$ is a commutative C*-subalgebra of ${\mathfrak{A}}$. We use this to give a description of the $\mathbb{M}_n({\mathfrak{B}})$-submodules of $\mathbb{M}_n({\mathfrak{A}})$.
Kumjian and Pask introduced an aperiodicity condition for higher rank graphs. We present a detailed analysis of when this occurs in certain rank 2 graphs. When the algebra is aperiodic, we give another proof of the simplicity of ${{\text{C}}^{*}}\left( \mathbb{F}_{\theta }^{+} \right)$. The periodic ${{\text{C}}^{*}}$-algebras are characterized, and it is shown that ${{\text{C}}^{*}}\left( \mathbb{F}_{\theta }^{+} \right)\,\simeq \,\text{C}\left( \mathbb{T} \right)\,\otimes \,\mathfrak{U}$ where $\mathfrak{A}$ is a simple ${{\text{C}}^{*}}$-algebra.
A left ideal on any C*-algebra is an example of an operator algebra with a right contractive approximate indentiy (r.c.a.i.). Indeed, left ideal in C*-algebras may be charcterized as the class of such operator algebras, which happen also to be triple systems. Conversely, we show here and in a sequel to this paper, that operator algebras with r.c.a.i. shoulod be studied in terms of a certain let ideal of a C*-algebra. We study left ideals from the perspective of ‘Hamana theory’ and using the multiplier algebras of an operator space studied elsewhere by the author. More generally, we develop some general theory for operator algebras which have a 1-sided identity or approzimate indentity, including a Banach-Stone theorem for these algebras, and an analysis of the ‘multiplier operator algebra’.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.